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Abstract

With the introduction of a central bank digital currency or CBDC, we argue that

the central bank needs to confront classic issues of banking, i.e. the tension between

providing liquid means of payments and desirable maturity transformation. We ana-

lyze these issues in a nominal version of a Diamond and Dybvig (1983) model, when

the central bank additionally has a price stability objective. While the central bank

can always deliver on its nominal obligations, runs can nonetheless occur, manifesting

themselves either as excessive real asset liquidation or as a failure to maintain price

stability. We demonstrate an impossibility result that we call the CBDC trilemma: of

the three goals of e�ciency, �nancial stability (i.e., absence of runs), and price stability,

the central bank can achieve at most two.
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1 Introduction

Many central banks and policymaking institutions, such as the Bank of Canada, the Bank

of England, the Bank for International Settlements, the ECB, the IMF, the People's Bank

of China, the Sveriges Riksbank, and the G30, are openly debating the introduction of

a central bank digital currency, or CBDC (Barrdear and Kumhof, 2016; Bech and Garratt,

2017; Chapman et al., 2017; Lagarde, 2018; Ingves, 2018; Kahn et al., 2019; Davoodalhosseini

et al., 2020; Auer and Böhme, 2020; Auer et al., 2020; Group of 30, 2020).

In this paper, we seek to understand the consequences of introducing CBDCs, by thinking

through its consequences to the very end. Indeed, the introduction and adoption of CBDCs

have the potential to be a watershed for the monetary and �nancial systems of advanced

economies. With a CBDC, households will have access to an electronic means of payment

and thus an attractive alternative to traditional deposit accounts. This remains true, even

if retail banks provide the �front end� for CBDC transactions: there may no need to hold

traditional deposit accounts on top. Indeed, the ��nancial inclusion� of households hitherto

excluded from banking is often touted as one of the attractive features of a CBDC, and

we agree. However, the potential decline of traditional deposit accounts raises the issue of

disintermediation: retail banks may no longer be able engage in maturity transformation and

fund long-term investments with traditional demand deposits. This decline can be avoided

and the old equilibrium restored, if the central bank engages in �pass through�, funneling

the funds from the households back to the retail banks and the long-term investments, as

Brunnermeier and Niepelt, 2019 have argued. With that, though, could the traditional

tension between maturity transformation and the possibility for bank runs return, and how?

What is the interplay of this tension with the traditional key objective of central banks to

maintain price stability?

We show that a CBDC trilemma arises, see �gure 1: of the three goals of e�ciency,

absence of runs and price stability, the central bank can achieve at most two. We build on

the classical model by Diamond and Dybvig (1983), which emphasizes a bank's role in ma-

turity transformation. In their model, a bank pools resources and �nance long-term projects

with demand deposits that can be withdrawn at a short time horizon to meet impatient

consumption needs. In our model, households hold CBDC rather than demand deposits.

There can no longer be a �withdrawal�, since households already hold the most liquid �nan-
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cial instrument. Instead, spending CBDC balances at a short time horizon replaces deposit

withdrawals. A �run� then manifests itself as a spending spree in that more than just the

fraction of impatient agents spending their CBDC balances at short horizon. Their spending

decision versus the available quantity of goods for purchase impacts the price level via mar-

ket clearing. Given the absence of deposit accounts or other means of payments, real goods

can only be traded against money, implicitly setting a form of a cash-in-advance constraint

in the tradition of Svensson (1985) and Lucas and Stokey (1987).

The households obtain their CBDC balances in the initial period, by selling their initial

endowment of goods to the central bank, which in turn invests these goods, using available

technologies. In our model, it is the central bank, which decides on the amount of long-

term projects to be liquidated at short horizon, observing the fraction of agents seeking to

spend their CBDC balances. That project liquidation policy ultimately is key to understand

e�ciency, the possibility for runs and price stability and thus the trilemma in �gure 1. The

obvious alternative is to consider the classic central bank intervention of changing the money

supply in response to a run. In section 7, we investigate the possibilities. We show that the

central bank would need to reduce the money supply or suspend portions of the money

supply as a means of payments. We argue that these are policy responses likely to wreck

havoc with the trust that households place in the monetary system.

Our assumption that it is the central bank engaging in maturity transformation and

potential liquidation of long-term projects is made entirely for simplicity. In section 10, we

show, how one can think of our model as a stripped-down version of a rich �nancial system,

where retail banks �nance loans to �rms, who conduct long-term projects, where households

buy their goods from �rms, and where short-term loans between the various parties allow

the �nancial resources to �ow.

As an alternative and in order to address the concern that the central bank �takes over�

the production side of the economy, we consider an extension of our model in section 8, where

we allow for direct competition between retail banks and the central bank to households

interested in the risk sharing arrangement o�ered by traditional deposit accounts. Retail

banks then need to obtain CBDC from the central bank to service withdrawals. The central

bank then needs to carefully choose the additional instruments of interest rates charged on

bank loans as well as a market share tax in order to keep the system competitive.

The rest of the paper is organized as follows. Section 2 reviews the related literature.
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Figure 1: CBDC Trilemma: For the central bank, it is impossible to attain all three objectives
at a time. When prioritizing one objective, at least one other objective has to be sacri�ced.

Section 3 introduces our model. Section 4 presents the main analysis of the model, de�nes an

equilibrium, and describes some of its fundamental properties. Section 5 discusses how the

social optimum can be implemented. Section 6 deals with price stability and how it relates

to the implementation of the social optimum. In Section 7, we discuss what may appear to

be a natural resolution: the adjustment of the money supply in a state-contingent manner.

Issues arising out of private-sector competition such as private investment or a competing

private banking sector are taken up in Section 8. In Section 11, we analyze a token-based

system and hybrid systems. Section 12 concludes.

2 Related literature

Our paper contributes to several strands of the literature. The three papers closest to

ours are Diamond and Dybvig (1983), Skeie (2008), and Allen et al. (2014). First, we

contribute to the literature of �nancial intermediation and bank fragility. Building on the

seminal Diamond and Dybvig (1983) model, we stress the central bank's role in liquidity

transformation when issuing a CBDC that allows depositors to share idiosyncratic liquidity

risk. Similar to Diamond and Dybvig (1983), we study the microincentives of depositors

to withdraw (�spend�) from the bank. But unlike them, we employ nominal instead of real

demand-deposit contracts, giving �the bank� an additional tool �the price level� to prevent

runs.
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Nominal demand-deposit contracts have previously been considered by Allen and Gale

(1998), Skeie (2008), Allen et al. (2014), Leiva and Mendizábal (2019), and Andolfatto et al.

(2020), among others. In Skeie (2008), large withdrawals of nominal deposits can lead to an

increase in the price level, reducing the real allocation and deterring runs. In a similar model,

Allen et al. (2014) show that optimal risk-sharing can be achieved via nominal contracts, but

their setting cannot exclude runs. In particular, compare their Section 4.4 to our Lemma

5.2. In their case, the price level reacts passively and cannot be �ne-tuned to the agent's

spending decisions. As we mentioned above, in both Skeie (2008) and Allen et al. (2014),

the �real� side is arising from the interplay between workers and entrepreneurs (and their

customers), leaving the nominal side to the banking system and the central bank. Andolfatto

et al. (2020) incorporate Diamond-Dybvig �nancial intermediation into the new monetarist

model of Lagos and Wright (2005). Di Tella and Kurlat (2021, forthcoming) ask and answer,

why banks are exposed to monetary policy. In our framework, we examine a drastically

simpli�ed model, dropping the �nancial intermediary sector, while these issues would arise

in a richer setting.

Unlike in all these papers, in our framework, the central bank is a strategic player that

observes withdrawals and, as a response, determines the real goods supply to alter either the

depositors' incentives to withdraw or the price level according to its objectives. Therefore,

we can show that the central bank can always implement the e�cient allocation in dominant

strategies, and runs no longer occur. Since implementation in dominant strategies requires

giving up price stability, we can also discuss the �ip side of this result. We further di�er from

the literature above by considering a more stylized model, abstracting from private banks

and �rms. In our framework, the central bank takes over the activity of real investment,

�nancial intermediation, and the management of the money supply.

Second, we contribute to a growing literature on the macroeconomic implications of

introducing a CBDC. Berentsen (1998) is perhaps the �rst analysis of the monetary policy

implications of digital money. Chiu et al. (2019) discuss issues regarding the competition

with and support of private banks. Keister and Sanches (2019) explore how the presence

of a CBDC a�ects the liquidity premium on bank deposits and, through it, investment.

Böser and Gersbach (2019a) gauge the implications of CBDCs for banking panics. Böser

and Gersbach (2019b) show that the introduction of a CBDC transfers default risk to the

central bank when a CBDC competes with private deposits. Fernández-Villaverde et al.
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(2020) demonstrate that competition for deposits between private banks and the central

bank can lead to a deposit monopoly at the central bank when commercial banks cannot

commit. Skeie (2019) analyzes in�ation-driven digital currency runs in a nominal model

where a private digital currency competes with a CBDC. In contrast to this strand of the

literature, our analysis abstracts from competition between a CBDC and deposits at private

banks, respectively a CBDC and private digital currency, by modeling the central bank as

the monopolistic provider of demand deposits. Brunnermeier and Niepelt (2019) derive an

equivalence result of allocations when introducing a CBDC if the central bank commits to

redepositing CBDC funds in private banks. In comparison, we are more explicit about the

micro incentives of agents to run on the central bank. Ferrari et al. (2020) discuss monetary

policy transmission in a two-country DSGE model when introducing a CBDC. In our model,

we focus on one country and do not feature �rms, other �nancial agents, or assets. Instead,

we focus on the depositors' microincentives to (not) run on the central bank.

Lastly, we contribute to the growing literature on cryptoeconomics that analyzes the price

and exchange rate implications of crypto mining (Choi and Rocheteau, 2020; Garratt and van

Oordt, 2019; Huberman et al., 2017; Prat and Walter, 2018), the micro and macroeconomics

of blockchain (Amoussou-Guenou et al., 2019; Biais et al., 2019a,b; Ebrahimi et al., 2019;

Leshno and Strack, 2020; Saleh, 2020) and token issuance (Cong et al., 2020; Li and Mann,

2020; Prat et al., 2019), and the macroeconomic implications of cryptocurrencies via currency

competition (Benigno, 2019; Benigno et al., 2019; Fernández-Villaverde and Sanches, 2019;

Schilling and Uhlig, 2019). Our paper abstracts from the existence of competing digital

currencies and assumes full functionality of the CBDC account and ledger system.

3 The basic framework

Our framework builds on the classical Diamond and Dybvig (1983) model of banking. Time

is discrete with three periods t = 0, 1, 2. There is a [0, 1]-continuum of agents, each endowed

with 1 unit of a real consumption good in period t = 0. Agents are symmetric in the initial

period, but can be of two types in period 1: patient and impatient. Impatient agents value

consumption only in period 1. In contrast, patient agents value consumption in period t = 2.

An agent is impatient with likelihood λ ∈ (0, 1) and otherwise is patient. The agent's type

is randomly drawn at the beginning of period 1 and types are private information. Since we
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have a continuum of agents, there is no aggregate uncertainty about the measure of patient

and impatient types in the economy. Thus, λ also denotes the share of impatient agents.

Preferences are represented by a strictly increasing, strictly concave, and continuously dif-

ferentiable utility function over consumption u(·) ∈ R. We further assume a relative risk

aversion, −x · u′′(x)/u′(x) > 1, for all consumption levels x ≥ 0.

There exists a long-term production technology in the economy. For each unit of the

good invested in t = 0, the technology yields either 1 unit at t = 1 or R > 1 units at t = 2.

Additionally, there is a storage technology between periods 1 and 2, yielding 1 unit of the

good in t = 2 for each unit invested in t = 1. All agents can access both technologies. Let

x1 ≥ 0 denote the agent's real consumption when deciding to spend (or �withdraw�) at t = 1,

and let x2 ≥ 0 denote the agent's consumption when spending at t = 2.

3.1 Optimal risk-sharing

Following Diamond and Dybvig (1983), we derive, �rst, the optimal allocation. The social

planner collects and invests the aggregate endowment in the long technology. Given that all

agents behave according to their type, the social planner maximizes ex-ante welfare

W = λu(x1) + (1− λ)u(x2) (1)

by choosing (x1, x2), subject to the feasibility constraint λx1 ≤ 1, and the resource constraint

(1− λ)x2 ≤ R(1− λx1). The interior �rst-order condition for this problem implies that the

optimal allocation (x∗1, x
∗
2) satis�es:

u′(x∗1) = Ru′(x∗2). (2)

Given our assumptions, the resource constraint binds in the optimum

R(1− λx∗1) = (1− λ)x∗2. (3)

This condition, together with equation (2), uniquely pins down (x∗1, x
∗
2) and delivers the

familiar optimal deposit contract in Diamond and Dybvig (1983). Together with R > 1 and

the concavity of u(·), equation (2) implies that the optimal consumption of patient agents is
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higher than the consumption of impatient ones: x∗1 < x∗2.

Moreover, the depositors' relative risk-aversion exceeding unity and the resource con-

straint yield x∗1 > 1 and x∗2 < R.1

Diamond and Dybvig (1983) show that a demand-deposit contract can implement the

e�cient allocation. A key feature of their analysis is the use of a �real� demand deposit

contract (i.e., a contract that promises to pay out goods in future periods). Due to a maturity

mismatch between real long-term investment and real deposit liabilities, the Diamond and

Dybvig (1983) environment, however, also features a bank run equilibrium under which

the social optimum is not implemented. Our main contribution is to show that a nominal

contract can lead to the implementation of the e�cient allocation in dominant strategies.

In other words, runs do not occur along the equilibrium path. The key mechanism is that

the central bank can set the price level, thereby controlling the wedge between real long-

term investment and nominal deposit liabilities. The implementation in dominant strategies

comes at a price, requiring �exibility of the price level.

4 A nominal economy

Consider now an economy with a social planner that uses nominal contracts to implement

the e�cient allocation.

Nominal contracts. The planner o�ers contracts in a unit of account for which it is

the sole issuer. Because central banks have a monopoly on currency, the planner in our

analysis can be equated with the central bank or any other monetary authority with the

ability to issue currency. In this paper, we refer to the unit of account as a central bank

digital currency (CBDC) or digital euros. Agents who sign a contract with the central bank

hand over their real goods endowment and receive CBDC balances in return. The most

straightforward interpretation of our environment is to think of a CBDC as an account-

based electronic currency in the sense of Barrdear and Kumhof (2016) and Bordo and Levin

(2017), i.e., to think of a CBDC as being akin to a deposit account at the central bank. In

1Following the proof in Diamond and Dybvig (1983),

Ru′(R) = u′(1) +

∫ R

1

∂

∂x
(x · u′(x)) dx = u′(1) +

∫ R

1

(x · u′′(x) + u′(x)) dx < u′(1) (4)

by −x · u′′(x)/u′(x) > 1 for all x.
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Section 11, we show that the results of our paper largely carry over to a token-based system

or hybrid systems. Agents can spend their CBDC balances by transferring them to other

agents in exchange for goods. As with physical euros, we impose the constraint that agents

cannot hold negative amounts of a CBDC. v Timing. At t = 0, the central bank creates

an empty account, i.e., a zero-balance CBDC account, for each agent in the economy. Then,

each agent agrees to invest her unit endowment of the good in exchange for M > 0 units of

digital euros, credited to that agent's account. Next, the central bank invests all goods in

the long-term technology.

In t = 1, agents learn their type and decide whether to spend their CBDC balances M ,

that is, either to withdraw them or to roll them over. The central bank contract imposes the

constraint that an agent either spends all her balances or no balance at all. Because types are

unobservable, the central bank cannot discriminate between patient and impatient agents to

deny a patient agent access to her balances. Let n ∈ [0, 1] denote the share and measure of

agents who decide to spend in t = 1. The central bank observes n and then decides on the

fraction y = y(n) of technology to liquidate, selling that amount in the goods market at the

unit price P1. Notice that through the resource constraint, early liquidation of technology

reduces the remaining investment and, hence, the supply of goods in t = 2. That is, there

is a real payo� externality, and the central bank's liquidation choice in t = 1 determines the

real supply of goods for both of the periods t = 1 and t = 2. Given n, the central bank

also chooses a nominal interest rate i = i(n) to be paid in period 2 on the remaining CBDC

balances. Each digital euro held at the end of t = 1 turns into 1 + i(n) digital euros at the

beginning of t = 2. Notice that i(n) ≥ −1, given that agents cannot hold negative amounts

of digital euros.

In t = 2, the remaining 1 − n depositors each have (1 + i)M digital euros to spend on

goods in the market at a price P2. The remaining investment in the technology matures so

that the central bank supplies R (1− y (n)) units of goods in exchange for money balances.

Figure 2 summarizes this timing.

De�nition 1. A central bank policy is a triple (M, y(·), i(·)), where y : [0, 1]→ [0, 1] speci�es

the central bank's liquidation policy and i : [0, 1] → [−1,∞) is the interest rate policy for

every possible spending level n ∈ [0, 1].

Notice that M itself is not state-contingent. The logic here is that, traditionally, 1 dollar
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Figure 2: Nominal and real investment and contracts

today is 1 dollar tomorrow: we maintain that tradition with that assumption here. In

Section 7, we discuss an extension where we allow M to be state-contingent as well.

Market clearing. In periods 1 and 2, agents spend their money balances for goods in

a Walrasian market. The market-clearing conditions are:

nM = P1y(n) (5)

(1− n)(1 + i(n))M = P2R(1− y(n)), (6)
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which take the form of the quantity theory equation in each period. Given aggregate spending

n in t = 1 and the central bank's policy, these conditions determine the price level, P1 = P1(n)

and P2 = P2(n), in each period:

P1(n) =
nM

y(n)
(7)

P2(n) =
(1− n)(1 + i(n))M

R(1− y(n))
. (8)

The central bank chooses the initial money supply before learning the measure of with-

drawals in the intermediate period. The central bank, however, controls the goods supply

in the Walrasian market, which is chosen conditional on the measure of withdrawals. As a

result, the central bank can control the price level in period 1.2 The nominal interest rate

allows the central bank to control the price level in period 2 independently of the price level

in period 1. Because the intermediary is the central bank with a monopoly on the unit of

account in which contracts are denominated, the liquidation policy is �exible and becomes

a monetary policy tool.

Implied real contract. The real value when spending CBDC balances in t = 1 equals

x1 =
M

P1

, (9)

while the real value when spending balances in t = 2 equals

x2 =
(1 + i (n))M

P2

. (10)

Aggregate spending n and the liquidation policy y (n) jointly determine the allocation of

goods via the market-clearing conditions. The real allocations when spending in t = 1

versus t = 2 can therefore be rewritten as

x1(n) =
y(n)

n
(11)

x2(n) =
1− y(n)

1− n
R. (12)

2A private bank, in contrast, would need to take P1, P2 as given, which together with the observation n
implies a unique liquidation y(n, P1).
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Because all agents that spend CBDC in the same period have the same nominal income, the

real goods supply y(n) is equally distributed across all spending agents in period 1, and the

supply R(1− y(n)) is equally allocated to all spending agents in period 2.3

To summarize: in t = 0, the central bank announces and commits to a policy (M, y(·), i(·)),
pinning down a spending-contingent real goods supply and an o�er to a nominal contract

(M,M(1 + i(·))) in exchange for 1 unit of the good. All consumers accept the contract and

the policy, meaning they have the option to spend either M digital euros in period 1 or

M(1+ i(n)) digital euros in period 2, for every possible level of aggregate spending n ∈ [0, 1].

We discuss voluntary participation in contracts in Section 8.

In t = 1, the aggregate spending level n is realized. Finally, the central bank's pol-

icy, together with the market-clearing conditions, results in the real consumption amounts

(x1(n), x2(n)) = (M
P1
, M(1+i(n))

P2
) =

(
y(n)
n
, 1−y(n)

1−n R
)
. Notice that the central bank is fully

committed to carry through with its policy (M, y, i), regardless of which n obtains and

independently of the implications for the price levels (P1, P2). We, therefore, de�ne

De�nition 2. A commitment equilibrium consists of a central bank policy (M, y(·), i(·)),
aggregate spending behavior n ∈ [0, 1] and price levels (P1, P2) such that:

(i) The spending decision of each individual consumer is optimal given aggregate spending

decisions n, the announced policy (M, y(·), i(·)), and price levels (P1, P2).

(ii) Given aggregate spending n, the central bank provides y(n) goods and sets the nominal

interest rate i(n).

(iii) Given (n, y(n),M), the price level P1 clears the market in t = 1.

Given (n, y(n), i(n),M), the price level P2 clears the market in t = 2.

As a particular consequence of this equilibrium concept, the price levels (P1, P2) �exibly

adjust to the aggregate spending realization and the announced central bank policy.

3These equations remain intuitive even if y(n) = 0 or y(n) = 1. Therefore, we assume that they continue
to hold, despite one of the price levels being potentially ill-de�ned or in�nite.
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5 Implementation of optimal risk sharing

In our model, the implementation of the optimal risk sharing arrangement (x∗1, x
∗
2) is of

particular interest to the central bank. Given the preferences and technology that we pos-

tulated above, only the real allocation of goods matters to the two types of agents. There

is, consequently, no additional motive for the monetary authority to keep prices stable.

However, focusing only on real allocations is a narrow perspective. There is a vast

literature arguing in favor of central banks keeping prices stable or setting a goal of low

and stable in�ation for reasons that are absent from our model. For instance, stable prices

minimize the misallocations created by nominal rigidities as in Woodford (2003). Having to

hold cash to accomplish transactions, such as in cash-in-advance or money-in-utility models,

creates a whole range of distortions that can be minimized by deft management of the price

level (think about the logic behind the Friedman rule). It certainly would therefore be

reasonable to extend the social planner objective (1) with a term, re�ecting a desire to keep

prices stable. Rather than extending the model to include these considerations, which would

complicate the analysis for an uncertain bene�t, we shall proceed by discussing the tradeo�s

between achieving the optimal real allocation of consumption and the implications of such

an e�ort for the stability of prices.

Runs on the central bank. The �rst important property of the equilibrium de�ned

above is that a nominal contract, per se, does not rule out the possibility of a run on the

central bank. Since impatient agents only care for consumption in t = 1, every equilibrium

will exhibit aggregate spending behavior of at least λ, implying n ≥ λ.4 Patient agents, on

the other hand, spend their CBDC balances strategically in t = 1 or t = 2. They spend

in t = 1 if they believe that the central bank policy implies x1 > x2. In that case, patient

agents will use the storage technology to consume x1 in period 2. Otherwise, patient agents

will �nd it optimal to wait until the �nal period. We say,

De�nition 3 (Central Bank Run). A run on the central bank occurs if patient agents also

spend in t = 1, n > λ.

In a bank run, the central bank is not running out of the item that it can produce freely

(i.e., it is not running out of digital money). This feature will distinguish the run equilibrium

4When y(n) = 0, impatient agents are indi�erent between spending and not spending. To break ties, we
assume that they spend their CBDC balances in t = 1.
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here from the bank run equilibrium in Diamond and Dybvig (1983), in which a commercial

bank prematurely liquidates all of its assets to satisfy the demand for withdrawals in period

1, therefore, ultimately running out of resources. If n > λ, the central bank is confronted

with a run on deposits. As we will see, the real consequences of a run on the central bank

with nominal contracts can be similar to its counterpart in the model with real contracts.

However, we shall demonstrate that the central bank's ability to avert a run is necessarily

tied to its monopoly on currency and the implementation of a nominal contract. Importantly,

by equations (11) and (12), a patient agent's optimal decision whether to run on the central

bank, to spend or not, depends on the central bank's choices only through the liquidation

policy y(·) and not via the nominal elements M and i(n). By our equilibrium de�nition, the

aggregate spending behavior n has to be consistent with optimal individual choices. These

considerations imply the following lemma.

Lemma 5.1. Given the central bank policy (M, y(·), i(·)),

(i) The absence of a run, n = λ, is an equilibrium only if x1(λ) ≤ x2(λ).

(ii) A central bank run, n = 1, is an equilibrium if and only if x1(1) ≥ x2(1).

(iii) A partial run, n ∈ (λ, 1), occurs in equilibrium if and only if patient agents are indif-

ferent between either action, requiring x1(n) = x2(n).

This lemma fully characterizes the range of equilibria, given the implied real allocation

of a central bank policy. But how can policy attain the �rst-best allocation?

5.1 Implementation of optimal risk sharing via liquidation policy

By (x∗1, x
∗
2) =

(
y∗

λ
, R(1−y∗)

1−λ

)
, the feasibility constraint y ∈ [0, 1], and the optimality conditions

in Section 3.1, the implementation of optimal risk sharing requires a liquidation policy

y∗(λ) = x∗1λ ∈ (λ, 1] (13)

given that only impatient types spend. Similarly to Diamond and Dybvig (1983), the resource

constraint y ∈ [0, 1] and x∗1 > 1 imply that optimal risk sharing is not feasible when all agents

spend. The implied price level when n agents spend equals P ∗1 (n) = nM
λx∗1

. These results
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con�rm our assertion at the start of this section that the social optimum is independent of

price level stability. Combining the previous derivation with Lemma 5.1, we arrive at the

following lemma.

Lemma 5.2. The central bank policy (M, y(·), i(·)) implements optimal risk sharing (x∗1, x
∗
2)

in dominant strategies if the central bank

(i) sets y(λ) = y∗ for any n ≤ λ.

(ii) sets a liquidation policy that implies x1(n) < x2(n) for all n > λ.

The real allocation to agents and, thus, their incentives to spend or not depend on the

central bank policy (M, y(·), i(·)) only through the liquidation policy y(·). Given that only

impatient agents are spending (i.e., n = λ), then a policy choice with y(λ) = y∗ implements

the social optimum. That is, there is a multiplicity of monetary policies that implement the

�rst-best since the pair (M, i(·)) is not uniquely pinned down. While the pair (M, i(·)) does
not a�ect depositors' incentives, it has an impact on prices via equations (7) and (8).

Second, thanks to the existence of the storage technology, patient agents can �but do not

have to� spend their CBDC balances at time two. Spending at time two is dominant only if

for every possible spending level n the real allocation at time two exceeds the allocation at

t = 1.

The central bank internalizes depositors' decision making. Since it observes aggregate

spending behavior n before it liquidates any asset, the central bank is not committed to

liquidating y∗ if patient agents are also spending. Condition (ii) of this lemma corresponds

to the classic incentive-compatibility constraint in the bank run literature: since expectations

are rational, in t = 1, depositors correctly anticipate the central bank policy that follows

spending behavior n. To deter patient agents from spending, the central bank can threaten

to implement a liquidation policy y(·) that makes spending non-optimal ex-post, i.e., so that

x1 (n) < x2 (n) for n ∈ (λ, 1]. If the monetary authority can credibly threaten patient agents

by setting such a liquidation policy, it deters them from spending ex-ante, and a central

bank run does not occur in equilibrium. Therefore, in the unique equilibrium, only impatient

agents spend, all patient agents roll over, and the social optimum is always attained.

The central bank implements �spending late� as the dominant equilibrium strategy for

patient agents by �ne-tuning the real goods supply via its liquidation policy, i.e., by making

real asset liquidation spending-contingent.
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De�nition 4. We call a liquidation policy y(·) �run-deterring� if it satis�es

yd(n) <
nR

1 + n(R− 1)
, for all n ∈ (λ, 1]. (14)

Such a liquidation policy implies that �roll over� is ex-post optimal x1(n) < x2(n) even though

patient agents are withdrawing n ∈ (λ, 1].

The implementation of a run-deterring policy is only possible because the contracts be-

tween the central bank and the agents are nominal. The liquidation of investments in the real

technology is at the central bank's discretion, thereby controlling the real goods supply and,

for a given spending level, the real allocation in either time period. A spending-contingent

liquidation policy implies a spending-contingent price level. In the case of real contracts

between a private bank and depositors such as in Diamond and Dybvig (1983), in contrast,

the real claims of the agents are �xed already in t = 0, thus pinning down a liquidation policy

for every measure of aggregate spending n. In the case of large withdrawals, rationing must

occur. Similarly, in the case of nominal contracts between a private bank and depositors, the

private bank has to take the price level as given, which then again pins down the liquidation

policy. Alternatively, the price level adjusts via market clearing to high aggregate nominal

spending (Skeie, 2008), while here it can serve as a strategic control variable.

As the main result of this paper,

Corollary 5 (Trilemma part I - No price stability). Every policy choice (M, y(·), i(·)), n ∈
[0, 1] with

y(λ) = y∗ and yd(n) <
nR

1 + n(R− 1)
, for all n ∈ (λ, 1], (15)

deters central bank runs and implements the social optimum in dominant strategies. Such

a deterence policy choice requires the interim price level P1(n) to exceed the withdrawal-

dependent bound:

P1(n) >
M

R
(1 + n(R− 1)), for all n ∈ (λ, 1]. (16)

Under a credible liquidation policy (15) all agents have a dominant strategy to spend if

and only if the agent is impatient; otherwise they wait. Thus, under rational behavior, runs

do not occur, and by y(λ) = y∗ the social optimum always obtains. That is, a strategic real

supply shock enforced by the central bank causes a demand shock to CBDC spending that

deters runs.
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The implementation, however, comes at a price. To attain feasibility of a run-deterring

policy y(·), the central bank has to sacri�ce price stability. By condition (16), the more

agents spend, the larger the required price level threat to deter runs. The threat has to be

credible to deter runs ex-ante. Agents have to believe that ex-post the central bank will give

up price stability if realized spending behavior is excessive. Only then do runs and in�ation

not occur on the equilibrium path.

In Diamond and Dybvig (1983), we learned the dilemma that o�ering the optimal amount

of risk-sharing via demand-deposit contracts requires private banks to be prone to runs.

Thus, a bad bank run equilibrium also exists. Our result brings this dilemma to the next

level. If the bank is a central bank equipped with the power to set price levels and control

the real goods supply, then optimal risk-sharing can be implemented in dominant strategies

such that a bank run never occurs, but only at the expense of price stability.

Observe that by the optimality conditions and the resource constraint, y∗ < λR
1+λ(R−1)

holds and that the upper bound for yd(n) is increasing in n. Therefore, the constant liqui-

dation policy

y(n) ≡ y∗ (17)

implements optimal risk sharing in dominant strategies. However, there exist other liqui-

dation policies that can accomplish the same result. The policy (17) is equivalent to the

run-proof dividend policy in Jacklin 198X, which is there implemented not via demand-

deposit contracts but via real equity shares that can be traded at the interim stage among

patient and impatient depositors. In Jacklin, the bank announces real dividend payments

in t = 0 which pins down a supply of goods in t = 1 and t = 2. The agents can trade

claims on dividends at the interim period but trade does not a�ects the overall goods sup-

ply. Therefore, Jacklin provides a special case of a run-deterring policy, implemented via

predetermined real dividends. For the same reasons as above, since the real supply in Jacklin

is predetermined in t = 1 and t = 2, the dividend policy in Jacklin does not allow constant

price levels in general, see section 8.2 for details. The policy (17) also delivers the same

result as does the classic suspension-of-convertibility option, which is known to exclude bank

runs in the Diamond-Dybvig world.

There is a subtle but essential di�erence, though, between suspension and our liquidation

policy. Suspension of convertibility requires the bank to stop paying customers who arrive

after the fraction λ of agents have withdrawn. By contrast, in our environment, there is
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no restriction on agents to spend their digital euros in period 1, and there is no suspension

of accounts. Instead, it is the supply of goods o�ered for trade against those digital euros

and the resulting change in the price level that generate the incentives for patient agents to

prefer to wait. This reasoning also implies that, in our model, (nominal) deposit insurance

will not deter agents from running on the central bank.

More concretely, low liquidation and thus supply implies that the price level P1 is pushed

above an upper bound that is increasing in the aggregate spending.5 The low liquidation

policy, on the other hand, deters large spending ex-ante, such that the high price level (16)

is a threat that is realized only o�-equilibrium. But each time we have an o�-equilibrium

threat, we should worry about the possibility of time inconsistency. In comparison with the

classical treatment of time inconsistency in Kydland and Prescott (1977), the concern here is

not that the central bank will be tempted to in�ate too much, but that it would be tempted

to in�ate too little. The central bank can avoid suboptimal allocations by committing to let

in�ation grow whenever necessary. A similar concern appears in models with a zero lower

bound on nominal interest rates. Eggertsson and Woodford (2003) have shown that a central

bank then wants to commit to keeping interest rates su�ciently low for su�ciently long, even

after the economy is out of recession, to get the economy o� the zero lower bound (see also

Krugman, 1998, for an early version of this idea). But once the economy is away from the

zero lower bound, there is an incentive to renege on the commitment to lower interest rates

and avoid an increase in the price level.

In our model, we assume that the central bank fully commits such that the threat is

credible. But what if the central bank is concerned with price stability and, therefore,

refuses to induce a high price level?

6 The classic policy goal: Price level targeting

There are many possible reasons why central banks view the stabilization of price levels or,

more generally, in�ation rates as one of their prime objectives. The model here should be

viewed as part of a larger macroeconomic environment, where the objective of price stability

5Our result resembles Theorem 4 in Allen and Gale (1998) and has a similar intuition. In Allen and Gale
(1998), a central bank lends to a representative bank an interest-free line of credit to dilute the claims of
the early consumers so that they bear a share of the low returns to the risky asset. In their environment,
private bank runs are required to achieve the �rst-best risk allocation.
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must be taken into account. That objective could arise out of concerns regarding nominal

rigidities or legal mandates, and they may be socially optimal, requiring an appropriate

modi�cation of (1). The task at hand, then, is to examine how price stability imposes

constraints on central bank policy. In particular, we will document the existence of deep

tensions between the three objectives of attaining the �rst-best outcome, deterring central

bank runs, and maintaining price stability.

Addressing the time-inconsistency problem above requires the introduction of an ob-

jective function for the central bank. Given an objective function for the central bank, a

time-consistent equilibrium is a commitment equilibrium such that the central bank policy

(M, y(n), i(n)) and the resulting price levels (P1(n), P2(n)) maximize the central bank's ob-

jective function for every value n ∈ [0, 1]. A particular objective is that the central bank

pursues price stability above everything else. We shall distinguish between two versions of

the objective of price stability: full price stability and partial price stability. Let us start by

analyzing the former.

6.1 Full price stability

De�nition 6. We call a central bank policy

(i) P1-stable at level P , if it achieves P1(n) ≡ P for the price level target P , for all

spending behavior n ∈ [λ, 1].

(ii) price-stable at level P , if it achieves P1(n) = P2(n) ≡ P for the price level target

P , for all spending behavior n ∈ [λ, 1].

In our de�nition, price stability here is treated as a mandate and commitment to the

price level P even for o�-equilibrium realizations of n. From the de�nition, price stability at

some level P implies P1 stability at P . Hence, the second price stability criterion is stronger.

De�nition 7. Given a price goal P , we call a commitment equilibrium a

• P1-price-commitment equilibrium, if the central bank policy is P1-stable at level P

• price-commitment equilibrium, if the central bank policy is price-stable at level P

What constraints does the price stability objective impose on central bank policy?
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Proposition 8 (Policy under Full Price Stability). A central bank policy is:

(i) P1-stable at level P , if and only if its liquidation policy satis�es:

y(n) =
M

P
n, for all n ∈ [0, 1] (18)

implying a real interim allocation:

x1(n) ≡ x1 =
M

P
≤ 1. (19)

(ii) A central bank policy is price-stable at level P , if and only if its liquidation policy

satis�es equation (18), its price level satis�es (19), and its interest policy satis�es:

i(n) =
P
M
− n

1− n
R− 1. (20)

A price-stable liquidation policy (18) requires asset liquidation in constant proportion to

aggregate spending for all n ∈ [0, 1]; see the green line in Figure 3, where we plot y(n) for

partial versus full price-stable liquidation policies. As a consequence, individual real con-

sumption x1 is constant regardless of aggregate spending behavior, and cuts below 1 since,

due to the resource constraint, the central bank cannot liquidate more than the entire invest-

ment. Hence, a price-stable liquidation policy excludes rationing or all kinds of suspension

policies. By equation (19) and again due to the resource constraint, for a given money supply

M , only price levels P̄ ≥ M can be P1- stable or price-stable. The slope of the liquidation

policy is, thus, equal or below 1. In other words, the rationing problem shows up indirectly

through a lower bound on all possible price-stable central bank policies.

There is a caveat here. Should agents be able to operate the savings technology on their

own, then they can always assure themselves a payo� of 1 in period t = 1 for every good

stored in period t = 0. Thus, the only CBDC contract acceptable to these agents would be a

�green line� coinciding with the 45-degree line and a slope of 1. Slopes below 1 are agreeable,

however, if the central bank is the only entity capable of operating this technology or the

only entity capable of intermediation with operators of that technology.

Recall from Section 5, that optimal risk sharing satis�es x∗1 > 1, while from Proposition
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Figure 3: Partial vs. full price-stable liquidation policies

8 a P1 price-stable policy requires x1 ≤ 1. Therefore, we can show the second part of our

trilemma:

Corollary 9 (Trilemma part II - No optimal Risk-sharing). If the central bank commits to

a P1-stable policy, then:

(i) Optimal risk sharing is never implemented.

(ii) The no-run equilibrium is implemented in dominant strategies, i.e., there is a unique

equilibrium in which only impatient agents spend, n∗ = λ, and there are no central

bank run equilibria.

(iii) If the central bank commits to a price-stable central bank policy, then the nominal

interest rate is increasing in n and non-negative i(n) ≥ 0 for all n ∈ [λ, 1].
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Intuitively, no runs take place under a P1-stable policy since the real allocation in t = 1

is too low, causing all patient agents to prefer to spend late.

6.2 Partial price stability

While price stability and the absence of central bank runs may be desirable, the constraint

(19), i.e., the failure to implement optimal risk sharing, is not. In particular, the implemen-

tation of the social optimum is impossible under complete price stability. Recall that optimal

risk-sharing at x∗1 > 1 triggers potential bank runs in models of the Diamond-Dybvig variety:

thus, part (ii) of the proposition above should not be a surprise. Demanding price stability

for all possible spending realizations of n is thus too stringent: for su�ciently high spending

levels of n, equation (18) exhausts the liquidation possibilities available to a central bank, as

y(n) cannot exceed 1. We therefore examine a more modest goal: a central bank may still

wish to assure price stability, but may deviate from its goal in times of crises. We capture

this with the following de�nition.

De�nition 10. A central bank policy is

(i) partially P1-stable at level P , if for all spending behavior n ∈ [λ, 1], either the policy

achieves P1(n) = P for some price level target P , or aggregate spending satis�es

n > P̄/M . In the latter case, we require full liquidation, y(n) = 1.

(ii) partially price-stable at level P , if for all spending behavior n ∈ [λ, 1], either the

policy achieves P1(n) = P2(n) = P for some price level target P , or aggregate

spending satis�es n > P̄/M . In the latter case, we require y(n) = 1.

For a graphical illustration, see the blue line in Figure 3. Obviously, P1-stable central

bank policies are also partially P1-stable, and price-stable central bank policies are also

partially price-stable.

De�nition 11. Given a price goal P , we call a commitment equilibrium a

• partial P1-price-commitment equilibrium, if the central bank policy is partially

P1-stable at level P

• partial price-commitment equilibrium, if the central bank policy is partially price-

stable at level P
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Recall that only price levels above the money supply P ≥M can attain full price stability.

We therefore now concentrate on lower price levelsM > P , since attaining optimality requires

1 < x∗1 = M/P̄ . Nevertheless, we also encounter a (weaker) feasibility constraint for partially

price-stable policies. Since the central bank cannot liquidate more than the entire asset,

y(n) = x1n ∈ [0, 1] for all n ∈ [λ, 1], it faces the constraint λx1 ≤ 1. Feasibility, therefore,

implies a lower bound on all possible partially stable price levels, P ≥ λM . Furthermore,

partial price stability restricts central bank policies:

Proposition 12 (Policy under Partial Price-Stability). Suppose that M > P ≥ λM .

(i) A central bank policy is partially P1-stable at level P , if and only if its liquidation policy

satis�es:

y(n) = min

{
M

P
n, 1

}
. (21)

(ii) For every partially P1-stable central bank policy at level P , there exists a critical aggre-

gate spending level nc ≡ P
M
∈ (0, 1) such that

(ii.a) For all n ≤ nc, the price level is stable at P1(n) = P and the real goods purchased

per agent in period t = 1 equal x1(n) = x1 = M
P
> 1 while real goods purchased

per agent in period t = 2 equal x2(n) = R(1− x1n)/(1− n).

(ii.b) For spending n > nc, the real goods purchased per agent in period t = 1 equal

x1(n) = 1/n while x2(n) = 0 and the price level P1(n) proportionally increases

with total spending n: P1(n) = Mn

(iii) A central bank policy is partially price-stable at P , if and only if its liquidation policy

satis�es equation (21) and its interest policy satis�es:

i(n) =
P
M
− n

1− n
R− 1, for all n ≤ nc. (22)

For n > nc, there is no supply of real goods in t = 2. Thus, P2 and i(n) are irrelevant.

(iv) For a partially price-stable central bank policy at P , there exists a spending level

n0 =
R P
M
− 1

R− 1
=
Rnc − 1

R− 1
∈ [0, nc), (23)
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such that the nominal interest rate turns negative for all n ∈ (n0, nc). For R < M/P ,

the nominal interest rate is negative for all n ∈ [0, nc).

Proposition 12 re�ects the central bank's capacity to keep the price level and the real

interim allocation x1 stable as long as spending remains below the critical level nc. The

stabilization of the price level requires liquidation of real investment proportionally to aggre-

gate spending by factor M/P . At the critical spending level nc, the central bank is forced to

liquidate the entire asset to maintain the price level P1. Since the central bank cannot liq-

uidate more than its entire investment, as spending exceeds the critical level nc, price level

stabilization via liquidation of real assets becomes impossible. For all spending behavior

n > nc, the real allocation to late spending agents is thus zero. The rationing of real goods

implies that the price level has to rise and the real allocation declines in aggregate spending.

The spending level n0 < nc is the level at which the real allocation to early and late

spenders is just equal

x1(n0) = x2(n0) = x̄1. (24)

Notice that x2(n) declines in n for n ∈ [0, nc]. Thus, if fewer than measure n0 of agents

spend, not spending is optimal for patient agents. But for all spending realizations n > n0,

the allocation at t = 2 undercuts the allocation at t = 1: x2(n) < x1(n), turning the real

interest rate on the CBDC negative, and causing �spend early� to be a patient agent's optimal

response to an aggregate spending behavior in excess of n0. Consequently, self-ful�lling runs

are possible as in Diamond and Dybvig (1983), and we obtain the following result as a

corollary of Proposition 12:

Corollary 13 (Trilemma part III- Runs on the Central Bank (Fragility)). Under every

partially P1-stable central bank policy with M > P ≥ λM , there is a multiplicity of equilibria:

(i) There exists a good equilibrium in which only impatient agents spend, n∗ = λ. In that

case, there is no run on the central bank, the social optimum is attained and the price

level is stable at level P .

(ii) There also exists a bad equilibrium in which a central bank run occurs, n∗ = 1, the

social optimum is not attained, and the price level is unstable.

Proposition 12 is in marked contrast to Proposition 8. One could argue that when banking

is interesting, i.e., x∗1 > 1, then the goal of price stability induces the possibility of runs on
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the central bank, the necessity for negative nominal interest rates, and the abolishment of

the price stability goal, if a run indeed occurs.

7 Money supply policy or suspension of spending

It is natural to ask why the central bank cannot resort to a much more classical monetary

policy to resolve the trilemma and attain price stability: expansion or reduction of the money

supply. In this section, let us then allow for the possibility that M is state-contingent, i.e.,

M is chosen as a function of aggregate spending M = M(n) at t = 1. Therefore, a central

bank policy consists of three functions (M(·), y(·), i(·)).
The analysis is now straightforward and easiest to explain for the case where the liqui-

dation policy is not state-contingent, y(n) ≡ y∗. To maintain price stability at some level

P , market clearing demands

nM(n) = Py∗. (25)

As a result, the total money balances spent in t = 1 stay constant in n, implying

nM(n) ≡ λM(λ), for all n ∈ [λ, 1]. (26)

But spending per agent alters, as does the total money supply M(n). That is, the central

bank would have to commit itself to reduce the quantity of money in circulation in response

to a demand shock encapsulated in n: the more people go shopping, the lower are individual

money balances. With the policy (25), y(n) ≡ y∗ and i(n) ≡ i∗ chosen so that P2 = P ,

the central bank can now achieve full price stability, e�ciency and �nancial stability. The

CBDC trilemma appears to be resolved. There are several ways of thinking about this.

State-contingent money supply. A �rst approach is to make the amount of CBDC

balances available for shopping in t = 1 state-contingent. Having such CBDC accounts with

random balances is an intriguing possibility: it is quite impossible with paper money but

fairly straightforward with electronic forms of currency. A di�erent interpretation of this

approach is to think in terms of a state-contingent nominal interest rate paid on CBDC

accounts between t = 0 and t = 1. One should recognize that both of these routes are

a bit odd, and contrary to how we usually treat money and interest rates. As for money,

a dollar today is a dollar tomorrow: changing that amount in a state-contingent fashion
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probably risks severely undermining the trust in the monetary system, and trust is key for

maintaining a �at currency. As for interest rates, it is commonly understood that interest

rates are agreed upon before events are realized in the future. A state-contingent interest

rate turns accounts into risky and equity-like contracts, likewise undermining trust in the

safety of the system.

Helicopter drops. A third way to think about the state-contingent nature of M corre-

sponds to a classic monetary injection in the form of state-contingent lump-sum payments

(�helicopter drops�) M(n) − M̄ (or taxes, if negative), compared to some original baseline

M̄ . If one wishes to insist that M(n)− M̄ ≥ 0, i.e., only allowing helicopter drops, then the

central bank would choose M̄ ≤M(1) as payment for goods in period t = 0 and thus always

distribute additional helicopter money in the �normal� case n = λ in period 1. Notice that

distributional issues would arise in richer models, where agents are not coordinating on the

same action, thereby distorting savings incentives.

Suspension of spending. With an account-based CBDC, there is an additional and

rather drastic policy tool at the disposal of the central bank: the central bank can simply

disallow agents to spend (i.e., transfer to others) more than a certain amount on their

account. In other words, the bank can impose a �corralito� and suspend spending. This policy

is di�erent from the standard suspension of liquidation, as the amount of goods to-be-made

available is a policy-induced choice that still exists separately from the suspension of spending

policy. Notice also that �suspension of spending� should perhaps not be called �suspension

of withdrawal.� Since there are only CBDC accounts and they cannot be converted into

something else, the amounts can only be transferred to another account. With the suspension

of spending policy, the central bank could arrange matters in such a way that not more than

the initially intended amount of money λM(λ) will be spent in period 1; see equation (26).

In practice, the central bank would then either take all spending requests at once and, if

the total spending requests exceeded the overall threshold, impose a pro-rata spending limit.

Alternatively, it could arrange and work through the spending requests in some sequence

(�rst-come-�rst-served), thereby possibly imposing di�erent limits depending on the position

of a request in that queue.

Monetary neutrality. Last but not least, a state-contingent money supply cannot

replace the central bank's liquidation policy as the active policy variable. Not only price-

targeting but also the deterrence of runs is an objective of the central bank for attaining
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optimal risk sharing.

A state-contingent money supply, however, does not impact the agent's spending behav-

ior: the individual agents exclusively care for their individual real allocation at t = 1, y/n,

versus t = 2, R(1 − y)/(1 − n). These allocations are independent of nominal quantities

(M,P1). That is, money is neutral. Given a realization of an individual real allocation y/n,

the identity:
y

n
=
M(n)

P1

(27)

pins down a relationship that needs to hold between the money supply and the price level that

clears the market. The central bank can implement all money supplies and price level pairs

(M,P1) that satisfy equation (27). And as soon as the price level goal P1 is pinned down,

contingent on the realization y
n
, the money supply that solves equation (27) is unique. But

in equation (27) the classic dichotomy holds, and the choice of the right-hand side (M,P1)

cannot alter the left-hand side, i.e., cannot alter incentives to run. Consequently, if the

central bank wants to impact consumers' behavior to run on the central bank to implement

the social optimum, it can only do so by altering the real goods supply y through adjustment

of its liquidation policy.

In summary. Given the previous discussion, a state-contingent money supply strikes us

as odd monetary policy. First, the usual inclination for central banks is to accommodate an

increase in demand with a rise, rather than a decline in the money supply. A central bank

that reacts to an increase in demand by making money scarce may undermine trust in the

monetary system. In particular, and needless to say, a spending suspension might create

considerable havoc; the experience in Argentina at the end of 2001 provides ample proof.

Even if this was not the case, monetary neutrality implies that adjusting the money supply

does not a�ect the run decisions of agents. Therefore, we think that this particular escape

route from the CBDC trilemma needs to be treated with considerable caution.

8 Voluntary participation in CBDC and competition by

private banks

The main model assumes that all consumers invest in a CBDC. It remains to clarify whether

agents may be better o� using the investment technology on their own, rather than relying on
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the central bank. This is an important question: if agents were to decide to stay in autarky

and invest in the investment technology directly, they may have incentives to supply goods

at the interim stage, thus, potentially undermining the central bank's liquidation policy.

Similarly, if the outside option is not autarky but investing in deposits with a di�erent, private

bank, then the liquidation policy of that private bank has implications for the aggregate real

goods supply at the interim stage, again impairing the e�ectiveness of the central bank's

policy. We now discuss both.

8.1 Autarky and voluntary participation in a CBDC

Assume all but one agent invest in a CBDC. Assume that this single agent invests in the

real technology at t = 0, yielding storage between t = 0 and t = 1, and yielding R > 1

when held between tt = 0 and t = 2. Then, at t = 1, she would learn her type. If she is

impatient, she will liquidate the technology, yielding 1 unit of the real good, and she would

consume her good. She would not sell the good against nominal CBDC deposits, since she

only cares about consumption at t = 1. In the case where she is impatient, she is worse

o� in comparison to an agent who invested in CBDCs with the central bank if the central

bank o�ers optimal risk sharing and manages to implement a run-deterring policy. This is

so, since under the latter, an individual impatient agent gets x∗1 > 1 real goods.

If the individual agent is patient, she will stay invested in the technology until time two.

There, the technology yields R > 1 units of the good. The agent will, thus, be better o�

than under investment in a CBDC since x∗2 < R; see Section 3.1. But, in particular, also in

the patient case, the individual agent will not o�er goods for sale in the interim period, since

liquidation and selling against a CBDC will only yield x∗2 in t = 2. Thus, in any case, patient

or impatient, the agent who invests in autarky will not have an incentive to undermine the

central bank's policy by increasing the goods supply in the interim period.

Does the agent prefer to remain in autarky rather than participating in the CBDC? Ex-

ante, the risk-averse agent cannot know whether she will turn out to be patient or impatient.

Diamond and Dybvig (1983) show that pooling of resources via banking can attain the social

optimum under an absence of runs, while investment under autarky cannot. That is, the

single agent is always better o� investing in the CBDC account if the central bank o�ers

optimal risk-sharing and implements a run-deterring policy. Thus, participation in the CBDC
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account is individually rational.

What if the central bank runs a policy of full price stability at goal P̄? In that case,

our second main result, Corollary 9, shows that runs on the central bank do not occur but

x1 ≤ 1. Thus, for all x1 < 1, investing in a CBDC is dominated by investing in autarky.

Voluntary participation thus requires x1 = 1 or M = P̄ , implying x2 = R. The agent is

then indi�erent between investing in a CBDC and staying in autarky. Yet, if she stayed in

autarky, she will not undermine the central bank's liquidation policy for the reasons above.

In the case of a partial price-stable policy, the situation is as in Diamond and Dybvig

(1983). Ex-ante, the agent cannot know whether a run occurs or not. Conditional on the

no-run equilibrium, we implement the social optimum and the agent is better o� investing

in a CBDC. But conditional on the run equilibrium, she was better o� in autarky. From

within the model, it is not possible to attach likelihoods for each equilibrium.

8.2 Can private banks undermine the central bank's policy?

The question of under what circumstances consumers prefer investing in a CBDC account

with the central bank rather than investing in demand deposits with private banks, with

implications for how both types of banks can coexist is addressed in Fernández-Villaverde

et al. (2020). In this section, we will analyze the private banks' incentives to provide goods

at the interim stage, conditional on the coexistence of private banks with the central bank.

Goods supply. If the central bank coexists with private banks, it controls the market

of goods only partially, with the remainder of the real goods being supplied by commercial

banks. As before, the measure of agents is normalized to one, divided between a share

α ∈ (0, 1) of agents who are CBDC customers at the central bank and a share 1 − α who

are customers at private banks. Assume that all agents invest their 1 unit endowment in

their corresponding bank and that the private banks invest in the same asset as the central

bank does. Then, at t = 1, the central bank can supply up to α goods via liquidation, while

private banks can supply up to 1− α goods.

Assume that there is one centralized goods market to which customers and banks have

access. That is, CBDC depositors can spend CBDC balances on goods supplied by private

banks and private bank customers can spend their private deposit balances on goods supplied

by the central bank. Let n denote the total measure of spending agents across both customer
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groups at the central bank and private banks, given by

n = αnCB + (1− α)nP , (28)

where nCB is the total share of consumers at the central bank who spend, while nP is the

total share of consumers at the private bank who spend. Given total spending n in period

t = 1, let yP (n) be the share of assets liquidated by private banks. In contrast, let yCB(n) be

the central bank's liquidation policy, i.e., the share of assets liquidated by the central bank.

The total goods supply y in the centralized market at the interim stage is then:

y(n) = α yCB(n) + (1− α) yP (n). (29)

Private deposit making. To collect investment in t = 0, the private banks o�er a

nominal demand-deposit account in return for 1 unit of the real good. The private nominal

accounts are denominated in units of the CBDC. Due to competition with the central bank,

the private contract also o�ers M units of the CBDC in t = 1 or M(1 + i(n)) units in t = 2.

To service withdrawals in terms of CBDC, private banks �rst observe their customers'

CBDC withdrawal needs nP , and borrow the required amount (1 − α)nPM of the CBDC

from the central bank at the beginning of period t = 1. The central bank creates the CBDC

quantity (1 − α)nPM on demand for the private banks. Private banks observe CBDC

spending at the central bank nCB, yielding aggregate spending n. During period one, the

private banks sell the share yP (n) of their real goods investment at price P1 at the centralized

market to all consumers, thus receiving proceeds of P1yP (n)(1 − α) units of the CBDC in

return, where P1 satis�es market clearing:

M
(

(1− α)nP + αnCB

)
= P1

(
yP (n)(1− α) + yCB(n)α

)
. (30)

The private banks use these CBDC proceeds to (partially) repay their loan to the central

bank at zero interest within period one. Since the central bank retains only partial control

over the goods market, it generically no longer holds nCBM = P1yCB(n). As a consequence,

the private banks can hold positive or negative CBDC balances (1 − α)(P1yP (n) − nPM)

with the central bank between t = 1 and t = 2.

We seek to examine a range of possibilities for the private bank withdrawals nP as well
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as liquidation choices yP . Thus, it is useful to impose the condition that private banks make

zero pro�ts, regardless of the �circumstances� nP or their choice for yP . This requires some

careful calculation, which we provide in Appendix 14, and only summarized here.

We assume that the central bank charges or pays the nominal interest rate z = (RP2/P1)−
1 on the excess or de�cit CBDC balances of private banks, to be settled at the end of t = 2.

Note that z > i, if x1 > 1 and equals the internal nominal shadow interest rate regarding

private bank liquidation choices. Moreover, we impose a market share tax at the end of

period t = 2 in order to compensate for pro�ts or losses due to circumstances nP .

At t = 2, the remaining private customers spend the quantity (1−α)(1−nP )M(1+i(n)) of

private CBDC accounts that the private banks borrow from the central bank at the beginning

of t = 2. The private banks sell their returns on the remaining investment R(1−yP (n))(1−α)

at price P2, where P2 satis�es market clearing

M(1 + i(n))
(

(1− α)(1− nP ) + α(1− nCB)
)

=

P2R
(

(1− yP (n))(1− α) + (1− yCB(n))α
)
. (31)

At the end of t = 2, the private banks settle their accounts with the central bank,

taking into account the remaining balances at t = 1 adjusted for interest, the end-of-period

tax compensating for circumstances nP , the loan at the beginning of t = 2 and the sales

proceeds at t = 2.

Joint liquidation policies. The actions of private banks and the central bank may not

be perfectly aligned when it comes to the liquidation of assets and the supply of goods at

the interim stage. Private banks can have various objectives depending on their ownership

structure and may be subject to regulation of their liquidation policy, both shaping yP .

Independently of whether private banks maximize depositor welfare as in Diamond and

Dybvig (1983), or pursue some other objective, the prevention of runs is key. We have seen

above that runs occur if the provision of real goods at the interim stage is high. Since the

market is centralized, for the spending incentives of bank customers it is irrelevant whether

these goods are provided by the central bank's or the private bank's liquidation of assets.

Hence, as before, a run-deterring liquidation policy y(·) is a function of aggregate spending
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n such that the real allocation at t = 1 undercuts the real allocation at t = 2:

y(n)

n
< R

(1− y(n))

1− n
, for all n ∈ [λ, 1]. (32)

Thus, again, a run-deterring policy satis�es

y(n) <
nR

1 + n(R− 1)
, for all n ∈ [λ, 1]. (33)

Perfect coordination. If the central bank and the private banks coordinate perfectly,

i.e., act as one entity, and have full control over the asset liquidation, then all run-deterring

policies are possible, as in the case where the central bank is a monopolist. But why would

they coordinate perfectly? By the market's centralization, the destiny of the central bank is

intertwined with the destiny of the private banks and both types of banks have an interest

in deterring runs. In particular, the private bank will, therefore, not undermine a central

bank's run-deterring policy by supplying additional goods when, for instance, prices are

high, since this might cause a run not only on the central bank but also on the private bank.

Coordination is therefore among the equilibrium outcomes.

Runs under imperfect coordination. For general liquidation policies yP of private

banks, runs can occur, as the following example shows. Assume that the private bank for

some reason follows a liquidation rule yP (n) ∈ [0, 1] where yP (nb) = 1 for all n ≥ nb where

nb ∈ (0, 1). For instance, nb = 1− α, i.e., the private bank is subject to regulation and has

to liquidate all assets if a fraction of its customers equal to its market share spends. In that

case, as we show next, the central bank's capacity to deter runs depends on the size of the

private banking sector, i.e., its market power α. Since the central bank can only control the

liquidation of its own investment yCP , via (32) and (29), a run-deterring policy yCB needs

to satisfy

yCB(n) <
Rn− (1− α)yP (n)(Rn+ 1− n)

α(Rn+ 1− n)
, for all n ∈ [λ, 1]. (34)

Now assume n > nb, such that yP (n) = 1. If in addition the central bank has a small

market share α→ 0, then the numerator converges to −(1−n), while the denominator goes

to zero, α(1 + (R − 1)n) → 0. That is, for nb < n < 1, the right-hand side in (34) goes to

minus in�nity such that (34) cannot hold. This implies that the run equilibrium exists.
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A su�cient condition: Run-deterrence under imperfect coordination. The

example above makes clear that the central bank's share in the deposit market needs to be

large enough in order to prevent runs. The following proposition provides the appropriate

bound under which the central bank can ensure the absence of a run, regardless of the private

bank's liquidation schedule yP : [λ, 1]→ [0, 1].

Proposition 14. Suppose that the central bank's share in the deposit market satis�es

α >
1− λ

(1− λ+Rλ)
. (35)

Then the central bank can always �nd a run-deterring liquidation policy yCB : [λ, 1]→ [0, 1],

regardless of the private bank's liquidation policy yP : [λ, 1]→ [0, 1].

Such an α ∈ (0, 1) exists since 1−λ
(1−λ+Rλ)

∈ (0, 1). Thus, the right-hand side 1−λ
(1−λ+Rλ)

of equation (35) imposes a lower bound on the balance-sheet size of the central bank as

a percentage of the total demand deposit market, such that run-deterring policies remain

possible despite coexisting private banks that are subject to liquidation restrictions.

Proof. [Proposition 14] We need to show that for any private bank liquidation policy yP :

[λ, 1] → [0, 1], there is a central bank liquidation policy yCB : [λ, 1] → [0, 1] so that (34) is

satis�ed. To derive a su�cient condition on the central bank's market share α under which

it can nevertheless implement a run-deterring policy, note that by R > 1, the right-hand

side in (34) declines in the value yp for all α ∈ (0, 1). Thus, if a central bank policy yCP is

run-deterring for yP = 1 for all n ∈ [0, 1], then yCP is also run-deterring for a private bank

policy yP (n) ≤ 1 for all n ∈ [0, 1]. Thus, assume yP = 1 for all n ∈ [0, 1]. Then, a su�cient

condition for a run-deterring policy against all private bank policies yP is:

yCB(n) <
Rn− (1− α)(Rn+ (1− n))

α(1 + (R− 1)n)
= 1− 1− n

α(1 + (R− 1)n)
, for all n ∈ [λ, 1]. (36)

The right-hand side is increasing in n and yCB(n) cannot undercut zero. Thus, an n α

such that:

0 < 1− 1− λ
α(1 + (R− 1)λ)

(37)

is a su�cient condition for the existence of a policy yCB ∈ [0, 1] that satis�es (36).
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9 Trade in Equity Shares (Jacklin, 1987)

New section

In a real banking model, Diamond and Dybvig (1983) show that banks can o�er the so-

cially optimal risk-sharing allocation via demand-deposit contracts but are, as a consequence,

prone to runs. Jacklin (1987) demonstrates that optimal risk sharing can be implemented in

a run-proof way when the bank does not o�er demand-deposits but rather shares in equity

if (i) real dividend payments D = λc∗1 in t = 1 and R(1−D) in t = 2 are predetermined in

t = 0 and (ii) there exists a market to trade claims on dividends in t = 1. The dividends

accrue to all investors, patient and impatient. If equity markets exist and open in t = 1,

then Jacklin demonstrates that patient investors have an incentive to puchase the impatient

agent's late dividend payments in return for the lower, early dividend payments. Likewise,

impatient agents have an incentive to trade their claims on a late dividend payment in re-

turn for early dividend payments. This trade happens in an incentive compatible way so

that all agents, before learning their types in t = 0, are willing to agree to the predetermined

dividend payments. In t = 1, impatient types cannot revolt or run on the bank to demand

an additional share of their late dividend payment. Therefore, runs that enforce excess asset

liquidation can no longer occur.

The question arises, would the Jacklin (1987) environment also work in our nominal

banking model to prevent runs on the central bank. The answer is not only yes, but in fact,

the dividend policy proposed in Jacklin (1987) is a special case of a run-deterring liquidation

policy with a dividend payment equal to

D = λ c∗1 = y∗, for all n ∈ [0, 1] (38)

That is, the liquidation policy discussed around equation (17) which implements the social

optimum in dominant strategies via CBDC demand-deposits is the real allocation that is

implemented in Jacklin (1987) via equity shares and trade in dividends. Similarly to the

central bank's liquidation policy in our main model, in Jacklin (1987), the real dividends to

be paid in t = 1 and t = 2 are predetermined in t = 0. Moreover, in Jacklin, all agents,

patient and impatient, receive dividends. Therefore, also in Jacklin, the total real liquidation
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in t = 1, and thus, the total goods supply in t = 1 and t = 2 is predetermined in t = 0,

independently of the individual agents' trading behavior at the interim stage. Like in our set-

ting, the �xed supply of goods in t = 1 enforces incentive-compatible self-selection, thereby,

implementing optimal risk sharing. In our setting, the �xed goods supply deters patient

types from spending, while in Jacklin (1987) it enforces trade in real dividends between the

patient and impatient agent group at a market clearing price.

Note, however, that our banking model features nominal contracts while in Jacklin (1987),

dividends are denominated in real terms. By our main result (5), a run-deterring policy

requires an in�ation threat (16), otherwise, patient types would not self-select but may be

tempted to shop early.

What if the dividend payments is Jacklin (1987) were nominal? Does in�ation necessarily

arise there too? And what is a run on a bank under trade in equity shares, i.e. in the Jacklin

(1987) setting?

Assume the extreme case where agents can hold equity shares in the central bank. The

total measure of all agents remains at one. The central bank o�ers nominal equity shares

and invests in the real technology. Assume, all agents receive 1 unit of CBDC shares when

investing their real goods in t = 0 and all agents, irrespective of their type, are paid a

nominal dividend D1 in = 1 and another nominal dividend D2 by the central bank in t = 2.

The central bank follows a liquidation policy y(n) and call (D1, D2) the central bank's

dividend policy, where as before, n ∈ [0, 1] denotes the measure of agents who go shopping

with CBDC in t = 1.

Since dividends are paid to all shareholders, the total nominal CBDC supply equals D1

in t = 1 and equals D2 in t = 2. The central bank sets a price level P1 at time t = 1 and P2

in t = 2 that clears the goods market.

In t = 1, types realize and impatient types want to consume as much as possible in t = 1.

Similar to Jacklin (1987), impatient types can can sell their claims on a nominal dividend

D2 in t = 2 in return for nominal dividends D1 in t = 1 to purchase consumption goods

provided by the central bank.

In Jacklin (1987), since dividends are real, they promise consumption in a one-to-one

relation. With nominal dividends, this is no longer true. Crucially, the central bank sees
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shareholders and shoppers as two di�erent agent groups.

Let n ∈ [0, 1], the measure of agents who go shopping with CBDC in t = 1 to spend

dividends D̃ ≥ D, after trade in nominal dividends has take place. Recall that there is no

storage technology for nominal dividends. That is, either an agent trades D for consumption

goods with the central bank directly or sells D in return for a claim on a larger nominal

dividend D2 in t = 2. Consequently, in the aggregate, the total measure D of nominal CBDC

is supplied in the market by D/n agents who are demanding y(n) goods at a market clearing

price P1. We can de�ne a run on nominal equity shares as the incidence where patient types

are not willing to trade their early dividends for late dividends with impatient types. That is,

more than just impatient types n > λ go shopping for real goods by spending their nominal

dividends D1, and the trade in dividends between the agent groups partially collapses.

After observing the total measure of shoppers n who jointly supply dividends D, the

central bank supplies y(n) goods according to her policy. The market clearing price P1

satis�es

D = P1 y(n) (39)

Likewise in t = 2

D2 = P2R(1− y(n)) (40)

The real allocations per agent equal

y(n)

n
=

D

P1n

in t = 1 and
R(1− y)

1− n
=

D2

P2(1− n)

in t = 2.

One di�erence to the nominal CBDC demand-deposit contract discussed above is, un-

der nominal equity shares, and for a liquidation policy that is �xed in n, y(n) = const

for all n ∈ [0, 1], the price level is stable in both t = 1 and t = 2. Nevertheless, in this

nominal version of Jacklin (1987) runs can occur, in the sense that patient types are not

willing to trade their early nominal dividends for late nominal dividends. That is, the key
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mechanism in Jacklin (1987) is not the �xation of equity shares and dividends but rather

that the dividend payments and thus the real goods supply in t = 1 is predetermined in t = 0:

Set y(n) = 1 for all n ∈ [0, 1]. That is, the central bank liquidates all real technology at

the interim stage so that the goods supply in t = 2 is zero, R(1−y(n)) = 0. Consequently, late

dividend payments D2 have zero real value, P2 → ∞, and all agents patient and impatient

go shopping for goods in t = 1, implying n = 1 and trade in nominal equity shares collapses.

The central bank can however implement the social optimum by setting a liquidation

policy y(n) = y∗ for n = λ. Moreover, the central bank has to deter patient types from

shopping early so that nominal equity shares are traded, which happens when the liquida-

tion policy is run-deterring y(n)
n

< R(1−y(n))
1−n , for all n ∈ (λ, 1], yielding again the familiar

constraint y(n) < nR
1+n(R−1)

as in equation (14). This implies a particular design on the real

value of the aggregate dividends via (39)

D

P1

<
nR

1 + n(R− 1)
, for all n ∈ (λ, 1] (41)

Since the nominal dividend payments are predetermined in t = 0, they cannot depend

on n. The right hand side of (41) is increasing in n. Therefore, if the central bank wants to

follow a �xed price level path, P1 = P̄ , then the dividends have to satisfy

D < P̄
λR

1 + λ(R− 1)
(42)

so that patient types have no incentive to shop early. By ŷ := λR
1+λ(R−1)

∈ (0, 1), the constant

liquidation policy ŷ is feasible, run-proof and implements the price level P̄ . For a spending-

�exible liquidation policy y(n) that varies in n, the price level will have to adjust, as in the

case of the nominal CBDC demand-deposit contract. Thus, generically, also with nominal

equity shares the trade-o� between implementing the social optimum in a run-proof way and

keeping prices stable exists. Moreover, recall that under a run-deterring liquidation policy,
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the nominal CBDC demand-deposit contract has �exible prices only o� equilibrium.

10 The �nancial system

Our model abstracts away from a number of features of the �nancial system, which may

generally be important, but appear to be rather tangential for the key issues at hand. In our

baseline setting, we only have households and the central bank interacting with each other.

This can appear as rather di�erent from from the institutional framework seen in practice and

the risk-sharing framework in place6. In our framework, we examine a drastically simpli�ed

model, dropping the �nancial intermediary sector entirely.

The purpose of this section is to link the two, and to motivate the stripped-down setup

in section 3 and beyond.

Time0 1 2

Households:

Firms:

Banks:

1 good

Loan: M

L: M

n
invest 1 invest 1-ySell y

n M

(1-n)M
M

repay

Sell R(1-y)

repayM

A: M $ (1-n)M(1-n) M 0  0  

(1-n) (1+i)M

Figure 4: The Financial System 1: households, �rms and banks.

Consider �gure 4, which shows a three-period model with households, �rms and banks.

Households start with 1 unit of some good each in period 0. In period 0, banks provide �rms

with one-period loans totalling M units of money. The �rms provide banks with an IOU

or loan agreement, adding to the asset side of the bank. Firms use their M units of money

6For example, Di Tella and Kurlat (2021, forthcoming) ask and answer, why banks are exposed to
monetary policy
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to purchase the goods from households, and invest them. Households in turn deposit the

money received with banks, creating bank liabilities of M in the form of deposit accounts.

Total assets are equal to total liabilities of the bank, indicated by the T-account. In period

1, a fraction n of households withdraws their deposits and use them to buy goods from �rms.

Firms sell y units of the goods to the households, keeping 1− y invested for sale in period 2.

The �rm uses its receipts of nM units of money for the partial repayment of the one period

loan obtained in period 0. The �rm thus needs to obtain a new loan, totalling (1 − n)M ,

and use that loan as well as the money received in the goods market in order to repay its

period-0 loan completey. In period 2, the remaining investment of the �rm generates R(1−y)

goods, which are sold to the household. We allow the bank to pay a nominal interest rate

of i on deposits held until period 2. Households withdraw their entire deposits. With the

cash receipts at hand, the �rm repays the original loan. The bank �nishes the period 2 with

a balance sheet of length zero.

A few remarks are in order. We have assumed that there is no interest between period

0 and period 1. They can be introduced, but would clutter notation at this point. We have

assumed that loans are one-period loans7. The degree to which banks are willing to roll over

these loans determines the number of goods the �rms have to sell in period 1, in order to

be able to repay the original loan in full. [ HARALDS COMMENT: This needs a bit more

thought ... it is the crucial step later on, though, through which the central bank may force

�rms into selling more of their goods. Seems the �rms always get nM units of money ...

so, how are they are forced into liquidating goods? How do we think about that in a usual

DD model? May be something about individual incentives vs market clearing.] In period 2

and in order for the balance sheet of the bank to end up with zero on both sides as well as

with the �rms selling all output against the all remaining money on the deposit accounts of

households, prices and interest rates have to appropriately clear the markets. These issues

will be sorted out in our model: for the purpose of the motivational description here, we

shall simply assume that this is so.

Note that�money� in �gure 4 is inside money, created by the banking system. In principle,

all the transactions could take place per appropriate bank-to-bank and account-to-account

transfers within the banking system. In practive, however, �withdrawal� of deposit accounts

is understood to allow the conversion of deposit accounts into cash and then paying with

7Alternatively, we could have assumed that loans are long-term, but callable in period 1.

38



cash in turn. There is no �cash� in �gure 4. There is no central bank.

Time0 1 2
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Figure 5: The Financial System 2: introducing a central bank and open market operations.

Figure 5 thus introduces a central bank and a role for cash transactions. Indeed, we now

assume that all transactions are for cash only, and that households hold cash across periods

rather than using deposit accounts at banks. While it is not hard to enrich matters further

and allow for a hybrid deposit-cash-based system, it would seem to unnecessarily complicate

matters further. What is important here is that cash is the most liquid means of payment.

Households no longer �withdraw� some accounts, turning their withdrawal into cash: it is

cash that they have at hand.

In �gure 5 therefore, the �rms seek to obtain cash, when obtaining a loan from a bank.

Banks cannot create cash: cash is outside money. The banks therefore �rst need to obtain

cash from the central bank. They do so by selling one-period bonds to the central banks for

cash, as a �rst step in period 0. This is a familiar and rather standard open market operation:

the central bank purchases bonds, using central bank money. Note that the bonds sold by

the banks in �gure 5 are bonds underwritten by the bank. In practice and outside �nancial

distress episodes, central banks insist on only purchasing government bonds in open market

operations. It would not be hard to introduce another layer into the structure in �gure 5,

where a government issues bonds to originally be held by banks, who in turn may sell them
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to the central bank, but that would not create a substantive di�erence for our analysis. In

practice, central banks furthermore typically pay for OMT bond purchases using reserves

rather than cash, i.e. crediting the central bank accounts of selling banks. The system shown

in �gure 5 could be enriched by allowing for the distinction between central bank reserves

and cash. In practice, however, banks can turn these reserve accounts into cash, as needed:

the distinction would not make a substantive di�erence. We allow the central bank to pay

a nominal interest on cash held by households between period 1 and period 2. While this

may appear to be rather futuristic, and perhaps hard to do with cash, it will be rather easily

feasible when cash is replaced with CBDC: we thus include this feature here.

In sum, �gure 5 shows the complete �nancial system, including banks, �rms and a cen-

tral bank, and it shows a central bank interacting with banks via standard open market

operations. It is now the central bank, which determines via its open market operations in

period 1 the degree to which banks can extend loans to �rms in period 1, in turn in�uencing

real activity per the sales y by �rms. This in�uence of the central bank on the volume of

loans extended by private banks and on real activity should be familiar from standard text-

books on money and banking. While matters are more complicated in practice, and involve

additional detail and steps, the important point is that the �nancial system in �gure 5 is

standard and conventional.

For the purpose of our benchmark analysis, the banks in �gure 5 turn out to be an

unnecessary layer: one might as well have �rms sell their loans directly to the central bank.

This is the system envisioned in �gure 6. One might even see this system as compatibe with

some of the measures undertaken during recent �nancial crisis or pandemic episodes, where

central banks indeed purchased bonds issued by the private sector rather than issued by

banks or the governments. The key for us, however, is simply that there is little substantive

distinction between the �nancial structure in �gure 5 and �gure 6.

Finally, one can strip out the �rms too, and simply assume that the central bank un-

dertakes the real investment and sales of goods itself, as shown in �gure 7. This picture of

the �nancial system surely looks odd: central banks do not engage in real production nor

sell goods directly to households! We agree. The point is simply that the �nancial structure

shown in �gure 7 can be understood as the conventional �nancial structure shown in �g-

ure 5, stripping out layers of little relevance to our analysis. However, it is good to keep the

system shown in �gure 5 in mind in order to understand, how households interact with the
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Figure 6: The Financial System 3: stripping out banks.
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Figure 7: The Financial System 4: only households and a central bank.

central bank. Households are not �entitled� to real goods, using their cash, as may seem the

case in �gure 7: rather households just spend cash, as was made clear in the description of
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�gure 5. Moreover, households do not �withdraw� balances from some central bank account

in �gure 7. They receive cash in period 0, and there is nothing more to be withdrawn: cash

is the most liquid form of payment. Finally and given that we allow an interest on remaining

cash balances to be paid in period 2, we could allow for interest payments on the overall

cash balance between period 0 and 1. What matters below in the analysis is the amount of

cash in the hands of households in period 1 and not, how much cash they originally received

in period 0.

11 Extensions

11.1 Token-based CBDC

With a token-based CBDC, a central bank issues anonymous electronic tokens to agents in

period 1, rather than accounts.8 These electronic tokens are more akin to traditional ban-

knotes than to deposit accounts. Trading with tokens only requires trust in the authenticity

of the token rather than knowledge of the identity of the token holder. Thus, token-based

transactions can be made without the knowlegde of the central bank.

Technically, and with appropriate software, digital tokens can be designed in such a way

that each unit of a token in t = 1 turns into a quantity 1 + i of tokens in t = 2, with i to be

determined by the central bank at the beginning of period t = 2: even a negative nominal

interest rate is possible.9

With that, the analysis in the previous sections still holds, since nothing of essence

depends on the identity of the spending agents other than total CBDC tokens spent in the

goods market. With a token-based CBDC, agents obtain M tokens in period t = 0, and

decide how much to spend in periods t = 1 and t = 2. Thus, the same allocations can

8This can be done with or without a blockchain. In the second case, a centralized ledger to record
transactions can be kept by a third-party that is separate from the central bank. That third party could also
potentially pay interest or impose a suspension of spending. For the purpose of this paper, we do not need
to worry about the operational details of such a third party or to specify which walls should exist between
it and the central bank to guarantee the anonymity of tokens.

9Historically, we have examples of banknotes bearing positive interest (for instance, during the U.S. Civil
War, the U.S. Treasury issued notes with coupons that could be clipped at regular intervals) and negative
interest (demurrage-charged currency, such as the prosperity certi�cates in Alberta, Canada, during 1936).
Thus, an interest-bearing electronic token is only novel in its incarnation, but not in its essence.
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be implemented except for those that require the suspension of spending, as discussed in

Subsection 7.

For the latter, the degree of implementability depends on technical details outside the

scope of this paper. Note that even with a token-based system, the transfer of tokens usually

needs to be registered somewhere, e.g., on a blockchain. It is technically feasible to limit the

total quantity of tokens that can be transferred on-chain in any given period. A pro-rata

arrangement can be imposed by taking all the pending transactions waiting to be encoded

in the blockchain, taking the sum of all the spending requests, and accordingly dividing

each token into a portion that can be transferred and a portion that cannot. It may be that

o�-chain solutions arise circumventing some of these measures, but their availability depends

on the precise technical protocol of the CBDC token-based system. In the case where the

token-based CBDC is operated by a centralized third party, such an implementation is even

easier.

11.2 Synthetic CBDC and retail banking

With a synthetic CBDC, agents do not hold the central bank's digital money directly. Rather,

agents hold accounts at their own retail bank, which in turn holds a CBDC not much di�erent

from current central bank reserves. This may be due to tight regulation by the monetary

authority. The retail banks undertake the real investments envisioned for the central bank

in our analysis above. A synthetic CBDC, therefore, corresponds to the model sketched in

Section 8.2 with α = 0.

The key di�erence from the current cash-and-deposit-banking system is that cash does not

exist as a separate central bank currency or means of payment. That is, in a synthetic CBDC

system, agents can transfer amounts from one account to another, but these transactions are

always observable to the banking system and, thereby, the central bank. Likewise, agents

(and banks) cannot circumvent negative nominal interest, while they could do so in a classic

cash-and-deposit banking system by withdrawing cash and storing it.

For the purpose of our analysis, observability is key. Our analysis is relevant in the case

of a systemic bank run, i.e., if the economy-wide fraction of spending agents exceeds the

equilibrium outcome. Much then depends on the interplay between the central bank and

the system of private banks. For example, if the liquidation of long-term real projects is up
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to the retail banks, and these retail banks decide to make the same quantity of real goods

available in each period, regardless of the nominal spending requests by their depositors,

then the aggregate price level will have to adjust. The central bank may seek to prevent this

either by imposing a suspension of spending at retail banks or by forcing banks into higher

liquidation of real projects: both would require considerable authority for the central bank.

Proposition 14, for instance, says that with α = 0, the central bank alone cannot implement

a run-deterring policy when o�ering a synthetic CBDC. Run deterrence then requires retail

banks to control liquidation in a particular way.

11.3 Cash

The key di�erence to a fully cash-based system is that spending decisions can only be ob-

served in the goods market, rather than by also tracing accounts or transactions on the

blockchain. In principle, the payment of nominal interest rates on cash is feasible, but is

demanding in practice. Excluding nominal interest rates on cash, due to these practical

considerations, implies the cash-and-deposit banking system discussed in Section 11.2 and

the restrictions discussed there. The tools available to a central bank are now considerably

more limited. These limitations may be a good thing, as they may impose a commitment

technology and may thus lead to the prevention of an equilibrium systemic bank run in the

�rst place, but the restricted tool set may be viewed as a burden ex-post, should such a bank

run occur.

12 Conclusion

Diamond and Dybvig (1983) have taught us that the implementation of the social optimum

via the �nancial intermediation of banks comes at the cost of making these banks prone to

runs. We have argued that this dilemma becomes a trilemma when the central bank acts as

the intermediary o�ering a CBDC because central banks are additionally concerned about

price stability. As summarized in Figure 1, a central bank that wishes to simultaneously

achieve a socially e�cient solution, price stability, and �nancial stability (i.e., absence of

runs) will see its desires frustrated. We have shown that a central bank can only realize two

of these three goals at a time.
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In its role as the intermediary, the central bank collects and invests the real goods en-

dowments of the agents in a real production technology, o�ering a nominal CBDC contract

in return. At an interim period, the agents learn whether they enjoy late (patient agent) or

early (impatient agent) consumption and, then, make their nominal spending decisions. A

central bank run occurs if patient agents also decide to spend their CBDC balances early.

Patient agents do spend early when the real value from early spending exceeds the real value

from late spending. But real values depend on the central bank's liquidation policy of real

investment. The central bank observes aggregate nominal spending and then decides how

much of its real investment to liquidate in order to supply goods to the agents spending

their balances. The price level for real goods then adjusts such that nominal CBDC spend-

ing clears the real goods market. In contrast, a private intermediary would need to take the

price level as given such that the price level jointly with aggregate nominal spending pins

down the necessary liquidation of its real investment.

As our main result, we have demonstrated that the central bank can always implement

optimal risk sharing in dominant strategies and deter central bank runs at the price of

threatening in�ation o�-equilibrium. If price-stability objectives for the central bank imply

that the central bank would not follow through with that threat, then allocations either have

to be suboptimal or prone to runs.

We hope to extend our analysis in several important directions. For instance, we can have

a richer �real� side of the economy, including analyzing how a CBDC can a�ect heterogeneous

agents. We can also study how a CBDC will a�ect a wider range of �nancial assets beyond

demand deposits. These are vital considerations to judge the desirability of moving toward

a CBDC world.
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13 Appendix A: Proofs

Proof. [Proposition 8] Proof (i): Via the market clearing condition (7), setting P1(n) ≡ P̄ for

all n requires y(n) = M
P
n, for all n ∈ [0, 1]. Thus, via (11), x1(n) = y(n)/n = M

P
is constant

for all n. Last, since the central bank cannot liquidate more than the entire investment in

the real technology, y(n) ∈ [0, 1] for all n, together with x1 constant requires, in particular,
M
P

= x1 = x1(1) = y(1) ≤ 1. Thus, M ≤ P̄ . Proof (ii): When additionally requiring price

stability, P1(n) = P2(n) ≡ P̄ , the market clearing condition (8) together with (18) yields

(20).

Proof. [Corollary 9] Proof (i): We know that price stability demands x1 ≤ 1 but the social

optimum satis�es x∗1 > 1. Proof (ii): x1 ≤ 1 implies x2(n) = 1−y(n)
1−n R = 1−nx1

1−n R ≥ R > 1 ≥ x.

Since the real value of the allocation at t = 2 always exceeds the real value of the time one

allocation at t = 1, patient agents never spend at t = 1; thus, there are no runs. Proof (iii):

By equation (19), P
M
≥ 1, implies i(n) =

P
M
−n

1−n R− 1 ≥ R− 1 > 0 for all n ∈ [λ, 1] by R > 1.

Further, P
M
≥ 1 implies that i(n) increases in n.

Proof. [Proposition 12] Proof (i): Equation (21) follows immediately from (7) and the con-

straint y(n) ≤ 1. Proof (ii): In n = nc, we have
M
P̄
n = 1. Therefore, nc > 0. By assumption

P̄ < M , thus nc < 1, with nc ∈ (0, 1). Equation (21) implies that x1(n) = y(n)/n is constant

at the level x = M/P , as long as y(n) < 1: this is the case for n < nc. For n ≥ nc, y(n) ≡ 1.

All goods are liquidated, so x1(n) = 1/n. Equation P1(n) = Mn follows from equation

(7). Proof (iii): Equation (22) follows from (8) combined with (21). Proof (iv): This is

straightforward, when plugging in (21) into P2(n) and observing that n0 is positive only for

R > M/P .

14 Appendix B: Private bank accounting

Consider the collective of private banks with market share (1− α) ∈ (0, 1). For the sake of

brevity, we refer to the collective as �the private bank.� A fraction nP of the private bank's

customers spend in t = 1, while a fraction nCB of the central bank's customers do so, for a

total fraction n of all agents n = (1 − α)nP + αnCB. Agents are promised M units of the

CBDC, when spending in t = 1, or M(1 + i) units, when spending in t = 2. The central
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bank liquidates yCB goods in period t = 1, while the private bank liquidates yP , for total

liquidation y = (1−α)yP +αyCB. For accounting, we introduce some notation. The private

bank borrows CBDC L1 from the central bank to meet withdrawals at the beginning of each

period, repaying the loan at the end of the period with the sales proceeds S1 from selling

real goods. No interest is charged for the within-period loan.

The di�erence D1 at the end of period t = 1 is kept on account at the central bank,

earning or paying the nominal interest rate z, to be settled at the end of period t = 2.

Further, the bank has to pay a tax τ(1 − α) denoted in CBDC at the end of period 2 (or

receive this as a subsidy, if τ < 0). The interest rate z and the tax τ are chosen by the

central bank (CB in the accounting below), and may depend on nP and choices yP of the

private bank. We seek to calculate x and τ so that the private bank makes zero pro�ts, i.e.,

is left with zero CBDC balances D2 at the end of period 2, after having liquidated and sold

all its remaining goods at the end of period 2. Accounting requires

Accounting in period t = 1:

Loan from CB: L1 = (1− α)nPM

Sales proceeds: S1 = (1− α)P1yP

Di�erence: D1 = S1 − L1 = (1− α)(P1yP − nPM)

Accounting in period t = 2:

Loan from CB: L2 = (1− α)(1− nP )(1 + i)M

Sales proceeds: S2 = (1− α)P2R(1− yP )

CB account: A2 = (1 + z)D1 − τ(1− α)

Di�erence: D2 = A2 + S2 − L2

= (1− α)
(
P2R + ((1 + z)P1 − P2R)yP − (1 + i)M − (z − i)nPM − τ

)
Market clearing:

In t = 1: P1y = nM

In t = 2: P2R(1− y) = (1− n)(1 + i)M
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Sum (1 + i) times the market clearing equation for P1 with the equation for P2 to obtain

P2R + ((1 + i)P1 − P2R)y = (1 + i)M . Use the latter equation to replace (1 + i)M in the

last expression for D2 to �nd

D2

P1(1− α)
= (i− s)(yP − y) + (z − i)(yP − nPx1)− τ

P1

(43)

where, as usual, x1 = M
P1

is the amount of real goods acquired by agents in period t = 1 and

where we introduce:

s =
P2

P1

R− 1 (44)

to denote the �shadow� nominal interest rate for private banks, equating liquidating a unit of

the good in t = 1, selling at P1 and investing at the shadow nominal return 1 + s to keeping

the unit of good and thus selling R units at price P2. Notice that y = nx1 and the market

clearing equations imply

1 + s = (1 + i)
1− n

1− x1n
x1 (45)

and, thus, s > i, whenever x1 > 1. In particular, this is the case at the e�cient outcome.

We note that s = i, if and only if x1 = 1, which is the maximal full price-stable solution as

well as the market allocation, when agents engage in self-storage.

Suppose now that the private bank sells exactly as many goods as purchased by their

withdrawing customers, i.e., yP = nPx1. Absent τ , equation (43) reveals that the private

bank will make a loss or pro�t, if x1 6= 1 and if yP 6= y, i.e., nP 6= n. For example, if the

share of private-bank customers who go shopping in t = 1 is larger than the average share

of customers who shops economy-wide, nP > n, and if the allocation achieves x1 > 1 and

thus s > i, then the private bank incurs a loss D2 < 0, absent τ , as the opportunity costs

for servicing agents in t = 1 are high. We shall use these observations to �x the tax τ to

compensate for these losses or pro�ts, and assume that

τ = P1(i− s)(nP − n)x1 (46)

from here onward. This τ depends on the speci�cs of the bank only via the �circumstances�

nP and does not depend on the choice yP . To take care of the case where yP 6= nPx1, we

use the central bank-account interest rate z. Solving for z per setting D2 = 0 in (43) and
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imposing (46) yields the following result, which we formulate as a proposition.

Proposition 15. Suppose τ satis�es (46). Then

{D2 = 0} ⇔
(
{yP = nPx1} or {z = s}

)
. (47)

In sum, taxing the �circumstance� pro�ts per (46) and paying an internal interest rate z

on central bank balances equal to the shadow nominal interest rate s achieves the objective

that private banks make zero pro�ts, regardless of their circumstances nP and regardless of

their liquidation choice yP .

Lemma 16. If the private bank sets yP ≡ yCB, then the interest rate for which the private

bank's balances with the central bank are zero equals z = i and τ = 0.

That is, if the private bank liquidates the same share of assets as does the central bank,

then the interest rate on CBDC balances z = i sets bank pro�ts to zero.

Proof. [Lemma 16] With τ = 0, the CBDC balance at the end of t = 2 equals

D2 = (1− α) (P2R(1− yp)− (1− np)(1 + i)M + (1 + z)(P1yp − npM))

= (1− α)M ∗

 (1 + i)
(

(1−yp)(1−n)

1−y − (1− np)
)

+(1 + z)
(
nyp
y
− np

)  (48)

where, at the last equality, we have plugged in P1 and P2. Then,

(1− yp)(1− n)

1− y
− (1− np) = −

(
nyp
y
− np

)
(49)

if and only if
y(1− yp)− n(y − yp)

y(1− y)
= 1 (50)

For α ∈ (0, 1), yP ≡ yCB implies yp = y. If y = yp, then equations (50) and (49) are true.

Thus, for y = yp the choice z = i puts D2 = 0.
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