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1 Introduction

What frictions are important in a DSGE model to capture the salient features of the data?

In the empirical literature literature this question is often answered by computing the pos-

terior odds of the model with and without the friction of interest (e.g., Smets and Wouters

2003, and Rabanal and Rubio-Ramirez, 2005). The prior distribution for the deep param-

eters plays a key role in these model comparisons. Priors for DSGE model parameters are

typically specified as follows. It is assumed that all the parameters are a priori independent.

For a subset of the parameters, for instance related to labor supply elasticities, mark-ups,

frequencies of price changes, capital adjustment costs there exists micro-econometric evi-

dence on empirically plausible parameter values, which can be used in the specification of a

prior. Other parameters, in particular those that determine the law of motion of the exoge-

nous shock processes, we do not have any direct observations that can assist the choice of

prior. Hence, informally, researchers often choose priors that ensure that the model is not

inconsistent with the autocovariance patterns observed in the actual sample or a pre-sample.

In practice, this amounts to simulating the prior predictive distribution for important sam-

ple moments and checking that the prior does not place little or no mass in a neighborhood

of important features of the data.

The standard choice of priors in the literature has two shortcomings. First, the inde-

pendence assumption potentially leads to a prior distribution that assigns non-negligible

probability mass to regions of the parameter space where the model is quite unreasonable.

Second, after having specified a prior distribution for the parameters of a benchmark model,

researchers often use the same prior distribution for alternative model specifications when

assessing the relative importance of various model features. But identical parameterizations

of the exogenous shock processes potentially generate very different dynamics across model

specifications. Hence a standard prior chosen for a given model can penalize an alternative

specification.

Our approach is motivated as follows. While it is difficult to form beliefs about the

parameters that govern the law of motion of the (unobservable) exogenous processes, we

do have observations (and beliefs) on the volatility and serial correlation of the various en-

dogenous variables. We provide a simple way of translating these beliefs into a reasonable

prior distributions for the parameters of the exogenous shock processes using dummy ob-

servations. We argue that our approach can be used to overcome the two shortcomings of

the standard prior distribution.
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We use our approach to investigate the importance of nominal rigidities and show that

it affects our assessment of the relative importance of different frictions. In particular, in

contrast with some of the previous literature we find that models with and without nominal

wage rigidities can both explain the persistence of inflation – especially when the latter are

endowed with our proposed dummy observations priors. Flexible wage models are rejected,

however, because they cannot reproduce the persistence in the labor share, a commonly used

measure of marginal costs. We also find that the evidence for indexation in the Phillips Curve

becomes rather tenuous once we use a prior that places all models considered on a similar

footing.

Section 2 provides a simple example that illustrates that a naive choice of prior distribu-

tions can severely distort Bayesian posterior odds for competing models. In Section 3 we are

introducing a dummy observations prior based on a quasi-likelihood function from a vector

autoregression (VAR), that can be used to induce a prior for parameters that are difficult to

quantify. Our approach is subsequently applied to a New Keynesian DSGE model, described

in Section 4. Section 5 summarizes our empirical findings and Section 6 concludes.

2 A Simple Example

Consider the following two models, in which yt is the observed endogenous variable and ut

is an unobserved shock process. In model M1 the shocks are serially uncorrelated. We we

introduce a backward-looking term φyt−1 on the right-hand-side as is often done in the New

Keynesian Phillips Curve literature:

M1 : yt =
1
α

IEt[yt+1] + ρyt−1 + ut, ut = εt ∼ iid(0, σ2). (1)

In model M2, on the other hand, the ut’s are serially correlated:

M2 : yt =
1
α

IEt[yt+1] + ut, ut = ρut−1 + εt ∼ iid(0, σ2). (2)

This example is taken from Lubik and Schorfheide (2006). Under the “backward-looking”

specification the equilibrium law of motion becomes

M1 : yt =
1
2
(α−

√
α2 − 4ρα)yt−1 +

2α

α +
√

α2 − 4ρα
εt, (3)

whereas under the model M2

M2 : yt = ρyt−1 +
1

1− ρ/α
εt. (4)
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Models M1 and M2 are observationally equivalent. The model with the ‘backward

looking’ component is distinguishable from the purely ‘forward looking’ specification only

under a strong a priori restriction on the exogenous component, namely ρ = 0. Although

M1 and M2 will generate identical reduced form forecasts, the effect of changes in α on the

law of motion of yt is different in the two specifications.

Subsequently, we will illustrate the consequences of seemingly innocuous choices for

prior distributions on posterior model odds. In the DSGE model literature, we can, broadly

speaking, distinguish two types of parameters: ‘deep’ taste and technology parameters and

‘auxiliary’ parameters that determine the law of motion of the exogenous processes. Priors

for the deep parameters are often chosen based on micro-econometric evidence, whereas the

priors for the auxiliary parameters are either chosen arbitrarily or they are chosen based

on some beliefs about the serial correlation and volatility of the endogenous variables. In

our example we assume that α is a deep parameter whose prior has been specified based on

micro-econometric evidence, whereas ρ and σ are auxiliary parameters. The baseline prior

is denoted as Prior 1 and summarized in Table 1.

To start, we use the same prior distribution for models M1 and M2. We generate

200 draws from the prior predictive distribution of the sample autocorrelation and standard

deviation of yt. These draws are depicted in Panels (1,1) and (2,1) of Figure 1. Notice that

according to model M2 the prior mean of the autocorrelation of yt corresponds to the mean

of ρ and is approximately 0.5. Under M1 the reduced-form autocorrelation coefficient is

a nonlinear function of both ρ and α. It turns out that the prior mean of the predictive

distribution of the autocorrelation is about 0.7. Hence, M1 andM2 have seemingly different

implications for the observables.

We now generate a sample of T = 80 observations from an AR(1) model with autore-

gressive coefficient 0.9 and shock standard deviation 0.9. We compute the posterior for the

two models under Prior 1. Draws from the posterior predictive distribution of the sample

moments are plotted in Panels (1,2) and (2,2) of Figure 1. The intersection of the solid lines

depict the actual sample moments. Given the fairly tight prior on α and ρ the estimated

version of M2 still under-predicts the sample correlation of the data, whereas M1 captures

it quite well. Log marginal data densities are reported in Table 2. The Bayes factor in favor

of M1 is approximately e18. Whether this value provides a good summary of our post-data

model uncertainty depends crucially on how confident we are about the specification of

Prior 1. If the prior reflects our intrinsic uncertainty about the parameters then the Bayes

factor is appropriate and we are ready to conclude that the ‘backward-looking’ specification
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is less desirable than the specification with serially correlated shocks. If, on the other hand,

the prior for the auxiliary parameters was fairly arbitrary, then the Bayes factors might be

regarded as misleading. After all, the two models are observationally equivalent. Therefore

we might regard a Bayes factor of 1 a more reasonable result than a Bayes factor of e18.

We re-estimate model M2 under an alternative prior, denoted as Prior 2, that puts

more weight on large values of ρ. The prior predictive distribution of the sample moments

under this prior is depicted in Panel (3,1) of Figure 1. The draws are virtually indistinguish-

able from those obtained with model M1 and Prior 1. Indeed, under this modified prior

distribution the Bayes factor of M1 versus M2 is essentially 1. The example illustrates

that a careless choice of prior, in particular the use of identical priors for the parameters of

the exogenous processes in different models, can lead to a significant distortion of posterior

model odds.

3 Dummy Observation Priors for DSGE Models

In a Bayesian framework, the likelihood function of associated with an econometric model

is re-weighted by a prior to obtain a posterior distribution for the model parameters. The

prior distribution plays an important role in the estimation of DSGE models. The priors

used in actual applications typically down-weigh regions of the parameter space that are

at odds with observations not contained in the estimation sample. They might also add

curvature to a likelihood function that is (nearly) flat in some dimensions of the parameter

space and therefore strongly influence the shape of the posterior distribution. While, in

principle, priors can be gleaned from personal introspection to reflect strongly held beliefs

about the validity and quantitative implications of economic theories, in practice most priors

are based on some observations.

Priors for DSGE model parameters are typically specified as follows. It is assumed

that all the parameters are a priori independent. For a subset of the parameters, for

instance related to labor supply elasticities, mark-ups, frequencies of price changes, capital

adjustment costs there exists micro-econometric evidence on empirically plausible parameter

values, which can be used in the specification of a prior. Other parameters, in particular

those that determine the law of motion of the exogenous shock processes, we do not have any

direct observations that can assist the choice of prior. Hence, informally, researchers often

choose priors that ensure that the model is not inconsistent with the autocovariance patterns

observed in the actual sample or a pre-sample. In practice, this amounts to simulating the
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prior predictive distribution for important sample moments and checking that the prior does

not place little or no mass in a neighborhood of important features of the data.

The standard choice of priors in the literature has two shortcomings. First, the indepen-

dence assumption potentially leads to a prior distribution that assigns a lot of probability

mass to regions of the parameter space where the model is quite unreasonable. Consider a

stationary AR(1) model of the form

yt = θ1yt−1 + θ2 + ut, ut ∼ iidN (0, σ2) (5)

and 0 ≤ θ < 1. Since the unconditional mean and variance of yt are given by

IE[yt] =
θ2

1− θ1
, V ar[yt] =

σ2

1− θ2
1

. (6)

Hence, if θ2 and σ are a priori independent, the prior assigns a fairly large probability

to parameterizations of the model under which the process has a large mean (in absolute

values) and a large variance.

Second, after having specified a prior distribution for the parameters of a benchmark

model, researchers often use the same prior distribution for alternative model specifications,

when assessing the relative importance of various model features. However, identical param-

eterizations of the exogenous shock processes potentially generate very different dynamics

across model specifications. Unless, the researcher holds strong beliefs about the param-

eters of the shocks instead of beliefs about reasonable magnitudes of the volatilities and

autocorrelations of the observables, the prior distribution should be adjusted for each model

specification under consideration. We will subsequently propose a dummy observations prior

that can be used to overcome the two shortcomings of the standard prior distribution.

The insight that prior distributions can be represented by dummy observations dates

back at least to Theil and Goldberger (1961). Dummy observations are frequently used to

construct prior distributions for vector autoregressions, for instance to represent a version

of the so-called Minnesota prior (Doan, Litterman, and Sims, 1984) or to tilt the VAR

estimates toward restrictions implied by a DSGE model (Del Negro and Schorfheide, 2004).

Dummy observations priors have several desirable features. First, they often lead to priors

that are conjugate and allow for a straightforward computation of posterior distributions.

Second, they are able to introduce correlation between model parameters without requiring

the researcher to specify a complete covariance matrix for all the parameters.

Consider the following VAR:

yt = Φ0 + Φ1yt−1 + . . . + Φpyt−p + ut, ut ∼ N (0, Σ), (7)
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where yt is an n× 1 vector of observables. Let xt be the k× 1 vector [1, y′t−1, . . . , y
′
t−p]′ and

re-write the VAR in matrix notation as

Y = XΦ + U. (8)

Here Y is the T×n matrix with rows y′t, X is the T×k matrix with rows x′t, U is composed of

u′t and Φ = [Φ0,Φ1, . . . , Φp]′. A dummy observations prior for the VAR can be constructed

as follows. Collect the T ∗ dummy observations in the matrices Y ∗ and X∗ and interpret

the VAR likelihood function for dummy observations

L(Φ, Σ|Y ∗) = (9)

(2π)−nT∗/2|Σ|−T∗/2 exp
{
−1

2
tr[Σ−1(Y ∗′Y ∗ − Φ′X∗′Y ∗ − Y ∗′X∗Φ + Φ′X∗′X∗Φ)]

}
.

as prior density for Φ and Σ. Combining (9) with the improper prior p(Φ, Σ) ∝ |Σ|−(n+1)/2

yields

p(Φ,Σ|Y ∗, X∗) (10)

= c−1
∗ |Σ|−T∗+n+1

2 exp
{
−1

2
tr[Σ−1(Y ∗′Y ∗ − Φ′X∗′Y ∗ − Y ∗′X∗Φ + Φ′X∗′X∗Φ)]

}
,

which implies that Σ has a marginal inverted Wishart distribution and Φ is multivariate

normal conditional on Σ. Since the likelihood function is Gaussian and the VAR is a

linear regression model, one only needs to specify the sufficient statistics for the dummy

observations: Y ∗′Y ∗, X∗′Y ∗, and X∗′X∗. We will subsequently modify this approach to

obtain a prior for (a subset of) the DSGE model parameters.

3.1 General Approach

We denote the DSGE model parameters by the vector θ and decompose it into two com-

ponents: θ = [θ′1, θ2]′. Roughly speaking, θ1 collects the parameters for which we can elicit

prior distributions, say, based on micro-econometric and other quantitative evidence not ob-

tained from the estimation sample, and θ2 is a sub-vector of parameters for which we choose

prior distributions such that the model implied autocovariances of the endogenous variables

are “realistic” and comparable across models. We assume that the observables have been

transformed such that the vector yt is covariance stationary. We use ΓY Y , ΓY X and ΓXX

to denote population autocovariances IE[yty
′
t], IE[ytx

′
t], and IE[xtx

′
t], respectively. If the

population autovariances are calculated from a DSGE model conditional on a particular

parameterization, we use the notation ΓY Y (θ) or ΓY Y (θ1, θ2), which serves as a shorthand

for ΓY Y ([θ′1, θ
′
2]
′).
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We are departing from the traditional approach of constructing prior distributions from

dummy observations in that we do not use the actual likelihood function of the DSGE model

to obtain a prior density. Instead, we are using a quasi-likelihood function for which we have

a low dimensional set of sufficient statistics. More specifically, we are using the likelihood

function with a p-th order vector autoregression, given in (9). To relate the DSGE model

parameters to the VAR, we define a VAR approximation of the DSGE model through the

population least-squares regression:

Φ∗(θ) = [ΓXX(θ)]−1ΓXY (θ), Σ∗(θ) = ΓY Y (θ)− ΓY X(θ)[ΓXX(θ)]−1ΓXY (θ). (11)

To simplify notation we collect the autocovariance matrices Γ = {ΓY Y , ΓXY , ΓXX}. and

will use L(θ1, θ2|Γ) as shorthand for L([θ′1, θ
′
2]
′|Γ) below. Our dummy observations prior for

the DSGE model parameters is based on the quasi-likelihood function

L(θ|Γ, T ∗) = |Σ∗(θ)|−(T∗+n+1)/2 (12)

× exp
{
−T ∗

2
tr

[
Σ∗(θ)−1(ΓY Y − 2Φ∗(θ)ΓXY + Φ′∗(θ)ΓXXΦ∗(θ)

]}
,

where the autocovariance matrices Γ are either constructed from introspection, a pre-sample

of actual observations, or an alternative candidate model. The prior (12) places low proba-

bility on values of θ for which the DSGE model implied autocovariances strongly differ from

the Γ’s. The larger T ∗, the more concentrated the prior density.

Given our goal of specifying a prior for θ2 such that the model implied autocovariances

are broadly in line with the target autocovariances Γ, a natural approach is to specify a

marginal prior distribution for θ1, denoted by p(θ1), and use quasi-likelihood function to

generate a conditional prior of θ2 given θ1.

p∗(θ1, θ2|Γ, T∗) = c1(θ1|Γ, T∗)L(θ1, θ2|Γ, T ∗)π(θ2)︸ ︷︷ ︸
p∗(θ2|θ1, Γ, T ∗)

p(θ1), (13)

where c1(θ1|Γ, T∗) is chosen such that

1
c1(θ1|Γ, T∗)

=
∫
L(θ1, θ2|Γ, T ∗)π(θ2)dθ2 for all θ1.

The disadvantage of the prior defined in (13) that it depends on a normalization constant

that typically cannot be calculated analytically. Hence, (13) would be very difficult to

implement in practice.

For the empirical work presented below, we consider the following simplification.

p(θ1, θ2|Γ, T∗) = c1(θ1|Γ, T∗)L(θ1, θ2|Γ, T ∗)π(θ2)︸ ︷︷ ︸
p(θ2|Γ, T∗)

p(θ1). (14)
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where c1(θ1|Γ, T∗) is chosen such that

1
c1(θ1|Γ, T∗)

=
∫
L(θ1, θ2|Γ, T ∗)π(θ2)dθ2.

This simplification leads to a prior in which θ1 and θ2 are independent and the normalization

constant does not depend on θ1. If the prior is used in model comparisons, T ∗ has to be

sufficiently large to ensure that p(θ2|Γ, T∗) (or p(θ2|θ1, Γ, T∗)) is proper even if π(θ2) is not.

3.2 Implementation

In order to implement the proposed dummy observations prior for the sub-vector θ2 a num-

ber of choices have to be made. The lag length p of the vector autoregressive specification

determines how many autocovariances are included in the construction of the prior distribu-

tion. The parameter T ∗ scales the prior distribution. A large value leads to a concentrated

prior. Most importantly, one has to choose a suitable Γ matrices. These matrices could

corresponds to sample autocovariances calculate from a pre-sample or based on data from

a different country, or they could be obtained from a benchmark model. In the empirical

application in Section 5 we are using sample autocovariances based on a pre-sample.

Since the functions Φ∗(θ) and Σ∗(θ) are highly nonlinear, we need numerical techniques

to generate draws from the prior distribution and to compute the normalization constant

c1(θ1|Γ, T∗). For the application below we use a random-walk Metropolis algorithm, de-

scribed in detail in An and Schorfheide (2006) to generate draws from the prior distribu-

tion. Based on the output of the Metropolis algorithm, Geweke’s (1999) modified harmonic

mean estimator is used to calculate the normalization constant. While the normalization

constant is not needed to generate prior or posterior parameter draws, it is important for

the calculation of the marginal likelihood associated with a DSGE model.

3.3 Quasi-Likelihoods versus Parameter Transformations

One of the motivations for our prior distribution based on the quasi-likelihood function

was that we wanted to use beliefs about unconditional moments of the endogenous variable

to induce a prior for the exogenous shock processes. In principle, one could start from a

prior on selected population moments for the endogenous variables and then, by a change

of variable argument, deduce an implicit prior for the parameters of the shock processes.

While such an approach is not practical for DSGE models that are highly nonlinear in the

parameters, we are illustrating the relationship between our dummy observations prior and
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a prior constructed from a parameter transformation in the context of the AR(1) model

given in (5). For simplicity we assume that σ2 = 1. Consider the following prior for θ1 and

θ2:

θ1 ∼ U [0, 1] and θ2 ∼ N (0, τ2). (15)

While this prior enables a straightforward calculation of the posterior, it is not very conve-

nient if we would like to impose a particular belief about say the unconditional mean and

the autocorrelation of yt.

We will begin by constructing a prior based on a quasi-likelihood function derived from

the simple location model yt = φ + ut. Suppose we would like to incorporate the belief

that the mean of yt is approximately µ. Let ΓY Y = µ2 + 1 and ΓY X = µ. The restriction

function that relates the parameters of the AR(1) model to the location model is given by

φ∗(θ) =
θ2

1− θ1
.

Hence, we obtain

L(θ|Γ, T ∗) = (2π)−T∗/2 exp
{
−T ∗

2

(
1 + µ2 − 2µ

θ2

1− θ1
+

θ2
2

(1− θ1)2

)}
(16)

Combining the quasi-likelihood function with the baseline prior distribution (15) yields

p(θ2, θ1) ∝ exp
{
−1

2

(
−2θ2µ(1− θ1)

T ∗

(1− θ1)2
+ θ2

2

[
T ∗

(1− θ1)2
+

1
τ2

])}
,

where ∝ denotes proportionality. Therefore,

θ2|θ1 ∼ N
([

1 +
1− θ1

τ2T ∗

]−1

µ(1− θ1),
[

T ∗

(1− θ1)2
+

1
τ2

]−1
)

(17)

and

p(θ1) ∝
[

T ∗

(1− θ1)2
+

1
τ2

]−1/2

exp

{
−T ∗

2
µ2

(1− θ1)2

[
1

(1− θ1)2
+

1
T ∗τ2

]−1
}

(18)

If we let τ2 −→∞ we obtain

p(θ1) ∝ |1− θ1| and θ2|θ1 ∼ N
(

µ(1− θ1),
1

T ∗
(1− θ1)2

)
, (19)

which corresponds to (13) in our AR(1) example. The larger T ∗ the smaller the variance of

the conditional distribution of θ2 given θ1. Notice, however, that the marginal distribution

of θ1 is not affected by T ∗. If we simplify the dummy observations prior by conditioning on

a particular value θ1 as in (14) we obtain

θ1 ∼ U [0, 1] and θ2 ∼ N
(

µ(1− θ1),
1

T ∗
(1− θ1)

2

)
. (20)
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As an alternative, consider a prior constructed from a change of parameters. Suppose

that our beliefs about the mean µ = IE[yt] are represented by µ ∼ N (µ, λ2). The determi-

nant of the Jacobian of the mapping from [θ2, θ1] to [µ, θ1] is given by

|J | =
∣∣∣∣∣∣

1
1−θ1

θ2
(1−φ)2

0 1

∣∣∣∣∣∣
=

1
1− θ1

Thus,

p(θ2, θ1) ∝ λ−1(1− θ1)−1 exp

{
− 1

2λ2

(
θ2

1− θ1
− µ

)2
}

(21)

and we obtain the following prior:

θ1 ∼ U [0, 1], θ2|θ1 ∼ N
(

µ(1− θ1), λ2(1− θ1)2
)

. (22)

Hence the conditional distribution of θ2 given θ1 under the change-of-parameter approach is

identical to (19) if we set λ = 1/
√

T ∗. The implied marginal distributions of θ1 are, however,

different. If the context of DSGE model, the change-of-parameter approach is impractical

because the autocovariances of yt are complicated nonlinear functions of θ and it is difficult

to calculate the Jacobian associated with the parameter transformation.

3.4 Predictive Likelihoods

Many economists hold the view that models ought to be judged on their out-of-sample pre-

dictive performance. If a model generates a predictive density for future observations, then

this density provides a fairly natural measure of forecast accuracy. If the actual observation

falls into the tails of the predictive density then the score will be low, indicating that the

model assigned low probability to an event that occurred. Hence, a sample of T observations

could be split into two parts such that we fit the model(s) based on the first τ observations

and then assess how well the model predicts the remaining T − τ observations. Hence, for

a parametric model with likelihood function p(y1, . . . , yT |θ) we can write

p(yτ+1, . . . , yT |y1, . . . , yτ ) =
∫

p(yτ+1, . . . , yT |θ, y1, . . . , yτ )p(θ|y1, . . . , yτ )dθ. (23)

Here p(θ|y1, . . . , yτ is the posterior density of θ given y1, . . . , yτ , and p(yτ+1, . . . , yT |θ, y1, . . . , yτ )

is the predictive density for the “future” observations given the parameter θ. It is well known,

that the predictive likelihood (23), e.g. Geweke (2005), is closely related to the marginal

likelihood:

p(yτ+1, . . . , yT |y1, . . . , yτ ) =
p(y1, . . . , yT )
p(y1, . . . , yτ )

. (24)
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An advantage of using predictive likelihoods instead of marginal likelihoods for model com-

parisons is that the predictive likelihood is less sensitive to the choice of prior distribution

for θ and may be well defined even if the prior for θ is improper.

The pre-sample based adjustment proposed in Section 3.1 is similar in spirit to the use

of the predictive likelihood. Technically, there are two differences. First, instead of using

the actual likelihood function to obtain a distribution of θ conditional on the pre-sample,

we are using a quasi-likelihood function, derived from a VAR approximation of the DSGE

model. Second, the shape of this quasi-likelihood function allows us to scale the distribution

of θ with a single hyperparameter T∗. The hyperparameter adds valuable flexibility to our

approach.

3.5 Marginal Likelihood Functions and Predictive Checks

This subsection is very preliminary. We provide a heuristic explanation of why a

comparison of prior predictive distributions for sample moments can generate some insights

about the outcome of model comparisons based on marginal likelihood functions. Consider

two models, M1 and M2. We assume that the models share a common likelihood function

p(Y |θ) and can be characterized through different prior distributions p(θ|Mi). The odds of

model M1 versus M2 are updated through the Bayes factor

BT (M1,M2) =
p(Y |M1)
p(Y |M2)

(25)

where

p(Y |Mi) =
∫

p(Y |θ)p(θ|Mi)dθ

is the marginal likelihood associated with model Mi. Suppose that S is a set of sufficient

statistics for the two models. Then we can write the likelihood function as

p(Y |θ) = f(Y |S)g(S|θ).

Hence,

BT (M1,M2) =
∫

g(S|θ)p(θ|M1)dθ∫
g(S|θ)p(θ|M2)dθ

(26)

If the observed value of the sufficient statistic for model M1 is far in the tails of its (prior)

predictive distribution, the odds in favor of M1 tend to be low.

To the extent that sample moments provide a good approximation of the sufficient

statistics associated with a linearized DSGE model, a comparison of their prior predictive

distributions across models can give insights of why one model is preferred to another.
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4 The DSGE Model

This section briefly describes the DSGE model, which is taken from Del Negro, Schorfheide,

Smets, and Wouters (2006). The model is based on work of Smets and Wouters (2003) and

Christiano, Eichenbaum, and Evans (2005) and contains a large number of nominal and real

frictions. To make this paper self-contained we subsequently describe the structure of the

model economy and the decision problems of the agents in the economy. The exposition

closely follows Section 2 of Del Negro, Schorfheide, Smets, and Wouters (2006).

4.1 Final Goods Producers

The final good Yt is a composite made of a continuum of intermediate goods Yt(i), indexed

by i ∈ [0, 1]:

Yt =
[∫ 1

0

Yt(i)
1

1+λf,t di

]1+λf,t

(27)

where λf,t ∈ (0,∞) follows the exogenous process:

ln λf,t = (1− ρλf
) ln λf + ρλf

ln λf,t−1 + σλ,f ελ,t, (28)

where ελ,t is an exogenous shock with unit variance that in equilibrium affects the mark-

up over marginal costs. The final goods producers are perfectly competitive firms that

buy intermediate goods, combine them to the final product Yt, and resell the final good to

consumers. The firms maximize profits

PtYt −
∫

Pt(i)Yt(i)di

subject to (27). Here Pt denotes the price of the final good and Pt(i) is the price of

intermediate good i. From their first order conditions and the zero-profit condition we

obtain that:

Yt(i) =
(

Pt(i)
Pt

)− 1+λf,t
λf,t

Yt and Pt =
[∫ 1

0

Pt(i)
− 1

λf,t di

]−λf,t

. (29)

4.2 Intermediate goods producers

Good i is made using the technology:

Yt(i) = max
{

Z1−α
t Kt(i)αLt(i)1−α − ZtF , 0

}
, (30)
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where the technology shock Zt (common across all firms) follows a unit root process, and

where F represent fixed costs faced by the firm. Based on preliminary estimation results

we decided to set F = 0 in the empirical analysis. We define technology growth zt =

log(Zt/Zt−1) and assume that zt follows the autoregressive process:

zt = (1− ρz)γ + ρzzt−1 + σzεz,t. (31)

All firms face the same prices for their labor and capital inputs. Hence profit maximization

implies that the capital-labor ratio is the same for all firms:

Kt(i)
Lt(i)

=
α

1− α

Wt

Rk
t

, (32)

where Wt is the nominal wage and Rk
t is the rental rate of capital. Following Calvo (1983),

we assume that in every period a fraction of firms ζp is unable to re-optimize their prices

Pt(i). These firms adjust their prices mechanically according to

Pt(i) = (πt−1)ιp(π∗)1−ιp , (33)

where πt = Pt/Pt−1, π∗ is the steady state inflation rate of the final good, and ι ∈ [0, 1].

Those firms that are able to re-optimize prices choose the price level P̃t(i) that solves:

maxP̃t(i)
IEt

[∑∞
s=0 ζs

pβsΞp
t+s

(
P̃t(i)

(
Πs

l=1π
ιp

t+l−1π
1−ιp∗

)
−MCt+s

)
Yt+s(i)

]

s.t. Yt+s(i) =


 P̃t(i)

(
Πs

l=1π
ιp

t+l−1π
1−ιp∗

)

Pt+s



− 1+λf,t

λf,t

Yt+s, MCt+s =
α−αW 1−α

t+s Rk α
t+s

(1− α)(1−α)Z1−α
t+s

,

(34)

where βsΞp
t+s is today’s value of a future dollar for the consumers and MCt reflects marginal

costs. We consider only the symmetric equilibrium where all firms will choose the same P̃t(i).

Hence from (29) we obtain the following law of motion for the aggregate price level:

Pt =

[
(1− ζp)P̃

− 1
λf,t

t + ζp

(
π

ιp

t−1π
1−ιp∗ Pt−1

)− 1
λf,t

]−λf,t

. (35)

4.3 Labor Packers

There is a continuum of households, indexed by j ∈ [0, 1], each supplying a differentiated

form of labor, L(j). The labor packers are perfectly competitive firms that hire labor from

the households and combine it into labor services Lt that are offered to the intermediate

goods producers:

Lt =
[∫ 1

0

Lt(j)
1

1+λw di

]1+λw

, (36)
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where λw ∈ (0,∞) is a fixed parameter. From first-order and zero-profit conditions of

the labor packers we obtain the labor demand function and an expression for the price of

aggregated labor services Lt:

(a) Lt(j) =
(

Wt(j)
Wt

)− 1+λw
λw

Lt and (b) Wt =
[∫ 1

0

Wt(j)−
1

λw di

]−λw

. (37)

4.4 Households

The objective function for household j is given by:

IEt

∞∑
s=0

βs

[
log(Ct+s(j)− hCt+s−1(j))− φt+s

1 + νl
Lt+s(j)1+νl +

χ

1− νm

(
Mt+s(j)
Zt+sPt+s

)1−νm
]

(38)

where Ct(j) is consumption, Lt(j) is labor supply, and Mt(j) is money holdings. Household’s

preferences display habit-persistence. The exogenous preference shifter φt, which affects the

marginal utility of leisure, is common to all households and evolves as:

ln φt = (1− ρφ) ln φ + ρφ ln φt−1 + σφεφ,t, (39)

Real money balances enter the utility function deflated by the (stochastic) trend growth of

the economy, so to make real money demand stationary.

The household’s budget constraint written in nominal terms is given by:

Pt+sCt+s(j) + Pt+sIt+s(j) + Bt+s(j) + Mt+s(j) + Tt+s(j) (40)

≤ Rt+s−1Bt+s−1(j) + Mt+s−1(j) + At+s−1(j) + Πt+s + Wt+s(j)Lt+s(j)

+
(
Rk

t+sut+s(j)K̄t+s−1(j)− Pt+sa(ut+s(j))K̄t+s−1(j)
)
,

where It(j) is investment, Bt(j) are holdings of government bonds, Tt(j) are lump-sum

taxes (or subsidies), Rt is the gross nominal interest rate paid on government bonds, At(j)

is the net cash inflow from participating in state-contingent securities, Πt is the per-capita

profit the household gets from owning firms (households pool their firm shares, and they

all receive the same profit), and Wt(j) is the nominal wage earned by household j. The

term within parenthesis represents the return to owning K̄t(j) units of capital. Households

choose the utilization rate of their own capital, ut(j). Households rent to firms in period t

an amount of effective capital equal to:

Kt(j) = ut(j)K̄t−1(j), (41)
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and receive Rk
t ut(j)K̄t−1(j) in return. They however have to pay a cost of utilization in

terms of the consumption good equal to a(ut(j))K̄t−1(j). Households accumulate capital

according to the equation:

K̄t(j) = (1− δ)K̄t−1(j) + µ

(
1− S

(
It(j)

It−1(j)

))
It(j), (42)

where δ is the rate of depreciation, and S(·) is the cost of adjusting investment, with

S(eγ) = 0, and S′′(·) > 0.

The households’ wage setting is subject to nominal rigidities á la Calvo (1983). In

each period a fraction ζw of households is unable to re-adjust wages. For these households,

the wage Wt(j) will increase at a geometrically weighted average of the steady state rate

increase in wages (equal to steady state inflation π∗ times the steady state growth rate of

the economy eγ) and of last period’s inflation times last period’s productivity (πt−1e
zt−1).

The weights are 1− ιw and ιw, respectively. Those households that are able to re-optimize

their wage solve the problem:

maxW̃t(j)
IEt

∑∞
s=0 ζs

wβsbt+s

[
− φt+s

1 + νl
Lt+s(j)1+νl

]

s.t. Eq. (40) for s = 0, . . . ,∞, (37a), and

Wt+s(j) =
(
Πs

l=1(π∗e
γ)1−ιw(πt+l−1e

zt+l−1)ιw
)
W̃t(j).

(43)

We again consider only the symmetric equilibrium in which all agents solving (43) will

choose the same W̃t(j). From (37b) it follows that:

Wt = [(1− ζw)W̃
− 1

λw
t + ζw((π∗eγ)1−ιw(πt−1e

zt−1)ιwWt−1)−
1

λw ]−λw . (44)

Finally, we assume there is a complete set of state contingent securities in nominal

terms, which implies that the Lagrange multiplier Ξp
t (j) associated with (40) must be the

same for all households in all periods and across all states of nature. This in turn implies

that in equilibrium households will make the same choice of consumption, money demand,

investment and capital utilization. Since the amount of leisure will differ across households

due to the wage rigidity, separability between labor and consumption in the utility function

is key for this result.

4.5 Government Policies

The central bank follows a nominal interest rate rule by adjusting its instrument in response

to deviations of inflation and output from their respective target levels:

Rt

R∗
=

(
Rt−1

R∗

)ρR
[(

πt

π∗

)ψ1
(

Yt

Y ∗
t

)ψ2
]1−ρR

eσRεR,t , (45)
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where εR,t is the monetary policy shock, R∗ is the steady state nominal rate, Y ∗
t is the target

level of output, and the parameter ρR determines the degree of interest rate smoothing. We

set the target level of output Y ∗
t in (45) equal to the trend level of output Y ∗

t = ZtY
∗,

where Y ∗ is the steady state of the model expressed in terms of detrended variables. The

central bank supplies the money demanded by the household to support the desired nominal

interest rate.

The government budget constraint is of the form

PtGt + Rt−1Bt−1 + Mt−1 = Tt + Mt + Bt, (46)

where Tt are total nominal lump-sum taxes (or subsidies), aggregated across all households.

Government spending is given by:

Gt = (1− 1/gt)Yt, (47)

where gt follows the exogenous process:

ln gt = (1− ρg) ln g + ρg ln gt−1 + σgεg,t (48)

4.6 Resource Constraint

The aggregate resource constraint:

Ct + It + a(ut)K̄t−1 =
1
gt

Yt. (49)

can be derived by integrating the budget constraint (40) across households, and combining

it with the government budget constraint (46) and the zero profit conditions of both labor

packers and final good producers.

4.7 Model Solution

As in Altig, Christiano, Eichenbaum, and Lindé (2004) our model economy evolves along

stochastic growth path. Output Yt, consumption Ct, investment It, the real wage Wt/Pt,

physical capital K̄t and effective capital Kt all grow at the rate Zt. Nominal interest rates

Rt, inflation πt, and hours worked Lt are stationary. The model can be rewritten in terms

of detrended variables. We find the steady states for the detrended variables and use the

method in Sims (2002) to construct a log-linear approximation of the model around the

steady state. All subsequent statements about the DSGE model are statements about its



This Version: August 21, 2006 17

log-linear approximation. We collect all the DSGE model parameters in the vector θ, stack

the structural shocks in the vector εt, and derive a state-space representation for:

yt = [ln(Yt/Yt−1), ln Lt, ln(WtLt/Yt), πt, Rt]′.

5 Empirical Application

We will now apply the dummy observations prior proposed in Section 3 to the DSGE

model outlined in the previous section. Throughout this section we will fix the following

parameters: δ = 0.025, λw = 0.3, and F = 0. We choose the mean of the preference shock,

φ, such that in steady state each household supplies one unit of labor. Hence, φ does not

appear in the subsequent definition of θ. Using the notation of Section 3 we will partition

the DSGE model parameters as follows:

θ1 = [α, ζp, ιp, s
′, h, a′′, νl, ζw, ιw, r∗, ψ1, ψ2, ρr, π

∗, γ, λf , g∗, Ladj ]′

θ2 = [ρz, ρφ, ρλf
, ρg, σz, σφ, σλf

, σg, σr]′

The parameter Ladj captures the units of measured hours worked. Loosely speaking, we will

refer to θ1 as the taste-and-technology parameters. and we will use the dummy observations

to generate a prior distribution for the parameters that determine the law of motion of the

exogenous processes.

The remainder of this section is organized as follows. We briefly describe the composition

of the vector of observables, yt, and the data sources in Section 5.1. The Γ matrices are

constructed from a pre-sample, and we use p = 1 lag of yt to construct the quasi-likelihood

function. In Section 5.2 we describe a Standard prior distribution1 for the DSGE model

parameters θ = [θ′1, θ
′
2]
′. When constructing our dummy observations prior, we retain the

marginal distribution of p(θ1) and generate alternative distributions for θ2. Section 5.3

compares the implications of the standard prior to those of the dummy observations prior

in the benchmark version of our DSGE model. We introduce flexible wages and prices

specifications of the DSGE model in Section 5.4 and ask what effect prior distributions

have when it comes to the assessment of nominal rigidities. Finally, we study Phillips

curve dynamics of various model specifications under the standard prior and the dummy

observations prior.
1The term standard does not refer to particular numerical values but rather to the way in which micro-

level and pre-sample information is used to justify the marginal prior densities.
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5.1 The Data

Our data are obtained from Haver Analytics (Haver mnemonics are in italics). Real output

is obtained by dividing the nominal series (GDP) by population 16 years and older (LN16N),

and deflating using the chained-price GDP deflator (JGDP). We compute quarter-to-quarter

output growth as log difference of real GDP per capita and multiply the growth rates by

100 to convert them into percentages. Our measure of hours worked is computed by taking

total hours worked reported in the National Income and Product Accounts (NIPA), which

is at annual frequency, and interpolating it using growth rates computed from hours of all

persons in the non-farm business sector (LXNFH). We divide hours worked by LN16N to

convert them into per capita terms. We then take the log of the series multiplied by 100 so

that all figures can be interpreted as percentage changes in hours worked. The labor share is

computed by dividing total compensation of employees (YCOMP) obtained from the NIPA

by nominal GDP. We then take the log of the labor share multiplied by 100. Inflation rates

are defined as log differences of the GDP deflator and converted into annualized percentages.

The nominal rate corresponds to the effective Federal Funds Rate (FFED), also in percent.

Our dummy observations prior is based on autocovariance matrices Γ̂Y Y , Γ̂Y X , Γ̂XX

computed from a sample of observations ranging from QIII:1954 to QIV:1980. In addition

to various prior statistics, we are also reporting marginal likelihood values for a sample of

100 observations from QI:1981 to QIV:2005.

5.2 Prior Distributions

We begin by specifying a standard prior distribution for the entire vector θ of DSGE model

parameters. This prior is summarized in Table 3 and the first four columns of Table 4

and essentially corresponds to the one used in Del Negro, Schorfheide, Smets, and Wouters

(2006).

Consider the marginal distributions of the taste-and-technology parameters θ1. The

priors for the degree of price and wage stickiness, ζp and ζw, are both centered at 0.6, which

implies that firms and households re-optimize their prices and wages on average every two

and half quarters. The 90% interval is very wide and encompasses findings in micro-level

studies of price adjustments such as Bils and Klenow (2004). The priors for the degree of

price and wage indexation, ιp and ιw, are nearly uniform over the unit interval. The prior for

the adjustment cost parameter s′ is consistent with the values that Christiano, Eichenbaum,
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and Evans (2005) use when matching DSGE impulse response functions to consumption and

investment, among other variables, to VAR responses.

The prior for the habit persistence parameter h is centered at 0.7, which is the value

used by Boldrin, Christiano, and Fisher (2001). These authors find that h = 0.7 enhances

the ability of a standard DSGE model to account for key asset market statistics. The prior

for a′′ implies that in response to a 1% increase in the return to capital, utilization rates rise

by 0.1 to 0.3%. These numbers are considerably smaller than the one used by Christiano,

Eichenbaum, and Evans (2005). The 90% interval for the prior distribution on νl implies

that the Frisch labor supply elasticity lies between 0.3 and 1.3, reflecting the micro-level

estimates at the lower end, and the estimates of Kimball and Shapiro (2003) and Chang

and Kim (2006) at the upper end.

We use a pre-sample of observations from QI:1960 to QI:1974 to choose the prior means

for the parameters that determine steady states. The prior mean for the technology growth

rate is 2% per year. The annualized steady state inflation rate lies between 0.5 and 5.5%

and the prior for the inverse of the discount factor r∗ implies a growth adjusted real interest

rate of 4% on average. The prior means for the capital share α, the substitution parameter

λf , and the steady state government share 1 − 1/g are chosen to capture the labor share

of 0.57, the investment-to-output ratio of 0.24, and the government share of 0.21 in the

pre-sample. The distribution for ψ1 and ψ2 is approximately centered at Taylor’s (1993)

values, whereas the smoothing parameter lies in the range from 0.17 to 0.83. Finally, the

prior for Ladj is chosen based on quarterly per capita hours worked in the pre-sample.

The standard priors for the parameters of the shock processes, θ2, are obtained as fol-

lows. Since we model the level of technology Zt as a unit root root process, the prior for

ρz, which measures the serial correlation of technology growth zt, is centered at 0.4. The

priors for ρφ (preference for leisure), ρλf
(price markup shocks), ρg (government spending)

are fairly diffuse and centered around 0.75. Finally, the priors for the standard deviation

parameters are chosen to obtain realistic magnitudes for the implied volatility of the en-

dogenous variables. Under the standard prior we assume that the parameters are a priori

independent.

As an alternative to the standard prior we consider dummy observations priors based on

different choices of T ∗. We retain the prior for θ1 described in Table 3 and use the dummy

observations to generate a prior for θ2. Using the notation of Section 3, we combine the

quasi-likelihood function in (14) with an initial prior π(θ2) that is uniform on [0, 1) for the

autocorrelation parameters and proportional to 1/σ for the standard deviation parameters,
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see column 5 of Table 4. As we consider different DSGE model specifications in Sections 5.4

and 5.5, we keep the standard prior unchanged.

5.3 Standard vs. Dummy Observation Prior in Benchmark Model

We use a random-walk Metropolis algorithm to generate parameter draws from the dummy

observations prior and directly sample from the standard prior. Table 4 summarizes prior

means and standard deviations for the parameters of the exogenous shock processes in the

benchmark model. Under dummy observations prior the technology and preference shock

are more volatile. Mark-up and technology shock are slightly more persistent, whereas the

autocorrelation of the preference and government spending shocks drops.

One of the motivations for the benchmark prior was to be able to generate correlation

between the DSGE model parameters and shift probability mass away from parameter

combinations that are empirically implausible. The panels of Figure 2 depict bivariate

scatter plots of draws generated from the two prior distributions. The dummy observations

prior introduces a strong negative correlation between the autocorrelation and standard

deviation parameters associated with the preference and mark-up shock.

Figure 3 shows draws from the prior predictive distribution of the sample standard

deviations of output growth, hours worked, the labor share, and inflation. These draws are

generated as follows. For a subset of our draws from the prior distributions of θ we simulate

samples of 100 observations from the DSGE and compute sample standard deviations. Under

the standard prior the predictive distribution of these sample standard deviations has fat

tails. The figure shows many draws in which the standard deviation of inflation exceeds

15, which is extreme given the U.S. post-war experience. Under the dummy observations

prior, the probability mass is shifted away from these extreme values and the predictive

distribution concentrates in a more plausible range.

5.4 Assessing the Role of Nominal Rigidities

This section discusses how nominal rigidities, sticky prices and wages, affect the model’s

ability to describe the data. We compare three specifications: i) the Benchmark model

described in Section 4, ii) the very same model without wage stickiness (ζw = 0), which

we refer to as the Flexible Wages model, and iii) the model without either wage or price

stickiness (ζw = ζp = 0), which we refer to as the Flexible Wages and Prices model. We show

how the presence of nominal rigidities changes the models’ implications for the moments
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of the endogenous variables using prior predictive distributions. In turn, we use these

prior predictive checks to help explain the model rankings obtained from Bayesian marginal

likelihoods. We also show how the use of the dummy observation prior in place of the

standard prior changes the a priori model’s implications and, as a consequence, the marginal

likelihoods.

Among others, papers by Rabanal and Rubio-Ramirez (2005), Smets and Wouters

(2003) and Christiano, Eichenbaum, and Evans (2005) also address the importance of nom-

inal rigidities in DSGE models. A contribution of our paper is to assess the robustness

of the results of the previous literature to changes in the prior distribution for the DSGE

model parameters. We find that overall the results of the previous literature are robust:

both nominal rigidities – sticky prices and wages – are needed to describe the data.

In addition, we show how the choice of the prior may change the reason why the flexible

price and wage models are rejected in comparison with the Benchmark. When we use

the standard prior on all three models, for instance, we find that both the Flexible Wages

and Prices and the Flexible Wages predict that inflation is less autocorrelated than in the

Benchmark model. However, when we use the dummy observations prior we find that the

prior implications for the autocorrelation of inflation in the Benchmark and the Flexible

Wages are roughly the same, while the Flexible Wages and Prices still predicts a much

lower degree of autocorrelation. Where the Benchmark and the Flexible Wages still differ,

even under the Dummy Observation prior, is in their predictions for the autocorrelation of

the labor share, which is much lower for the latter than for the former. Marginal likelihood

comparisons, in turn, find that both the Flexible Wages and Prices and the Flexible Wages

are less capable of explaining the data than the Benchmark model, even under the dummy

observations prior.

Figure 4 shows the prior predictive distributions for the sample autocorrelations of

inflation and the labor share. The top two panels compare the predictions for the Benchmark

and the Flexible Wages and Prices models. The bottom two panels compare the Benchmark

and the Flexible Prices models. The two panels on the left use the standard prior while the

two panels on the right use the dummy observations prior with T ∗ = 10 dummy observations.

In each panel the dark crosses (+) and the lighter circles (O) represent draws from the

Benchmark and the alternative model, respectively. The dark and light lines show the

median for the two models.

The figure shows that under the dummy observations prior the Benchmark model’s

predictions are more concentrated than under the standard prior, but the median prediction
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is largely unchanged: Under both priors the model generates large persistence in both

inflation and the labor share. On the contrary, for the Flexible Wages and Prices model

the autocorrelation of inflation is negative roughly fifty percent of the times under the

standard prior. Under the dummy observations prior the predicted inflation autocorrelation

rises, but is nowhere as high as that predicted by the Benchmark model. For the Flexible

Wages model the standard prior implies that the predicted autocorrelation of inflation, while

higher than for the Flexible Wages and Prices model, is still lower than for the Benchmark

model. Under the dummy observations prior the differences between the Benchmark and

the Flexible Wages predictions for inflation autocorrelation nearly disappear. Differences

in the predictions for the autocorrelation in the labor share remain, however. The Flexible

Wage model cannot generate the degree of persistence in the labor share afforded by the

presence of both nominal rigidities.

An interesting feature of Figure 4 is that the Flexible Wages and Prices model can

generate persistence in the labor share, even under the standard prior, while the Flexible

Wages model never can. In Figure 5 we therefore compare the impulse response functions

for both models, computed under the dummy observations prior. The dashed and solid

lines represent the responses for the Flexible Wages and Prices and for the Flexible Wages

models, respectively. If both prices and wages are flexible

l̂sht = −λ̂f,t

where l̂sht are percentage deviations of the labor share from its steady-state value and λ̂f,t

is the mark-up shock. Hence, a persistent mark-up shock leads to a persistent labor share.

In the Flexible Wages model other shocks affect the labor share as well, and their impulse

responses are far less persistent than that of the mark-up shock. For inflation, the persistence

of mark-up shocks does not help the Flexible Wages and Prices model. Conversely, the

inflation impulse responses for the Flexible Wages model are all quite persistent.

Table 5 summarizes the prior distributions for the shock parameters under the stan-

dard and the dummy observation prior. The table shows that the dummy observations

prior generates changes in the persistence of the exogenous processes that are different in

the three different models, highlighting the idea that these parameters have different mean-

ings depending on the model under consideration. For the Benchmark model the dummy

observations prior generates a persistent mark-up shock. For the Flexible Wages model

government spending shocks are persistent. For the Flexible Wages and Prices model both

government spending and mark-up shocks are very persistent.
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Finally, Figure 7 depicts marginal data density differentials relative to the benchmark

model. Consistently with the discussion of Figure 4, the use of the Dummy Observation

prior narrows the gap between the models. Yet, differences in marginal likelihoods are stark

even under the alternative prior.

5.5 Assessing the Phillips Curve

This section focuses on the specification of the New Keynesian Phillips curve relationship,

which for the model described in section 4 takes the following log-linear form:

π̂t = (1− ζpβ)(1− ζp)
(1 + ιpβ)ζp

[
m̂ct + λf

1 + λf
λ̂f,t

]

+ ιp
1 + ιpβ

π̂t−1 + β
1 + ιpβ

IEt[π̂t+1].
(50)

where ̂ denotes log-deviations from the steady state. Our model implies that (in terms of

log deviations) marginal costs equal the labor share:

m̂ct = l̂sht.

A large body of literature (Gaĺı and Gertler 1999, JME 2005 volume, . . . ) has investigated

whether the lagged inflation term π̂t−1 needs to be incorporated in order for the Phillips

curve to adequately describe the dynamics of inflation. While much of the literature studies

the issue using single equation methods, we use full information methods here. Equation (50)

shows that in terms of our model the issue boils down to assessing the magnitude of the

parameter ιp ∈ [0, 1]. We therefore compare three models: i) the Benchmark model that

allows for partial indexation ( ιp ∈ (0, 1) ); ii) The very same model with No Indexation

(ιp = 0), and iii) the model with Full Indexation (ιp = 1). As shown in the simple example

in Section 2, the choice of prior for a comparison of the three specifications is not innocuous:

a model that assigns a large coefficient to the lagged inflation term in (50) and imposes a

small autocorrelation in the mark-up shock, might generate similar dynamics as a model

without indexation and a persistent mark-up shock.

Figure 6 shows the prior predictive distributions for the sample autocorrelations of

inflation and the correlation between inflation and labor share. The autocorrelation of

inflation is clearly a moment of interest in assessing the empirical relevance of the Phillips

curve. The correlation between inflation and labor share is also relevant. Gaĺı and Gertler

(1999) argue that the positive correlation found in the data between inflation and the labor

share is prima facie evidence in support of the Phillips curve. We therefore investigate the

a priori implications of the three models considered here for these two moments.
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The top two panels compare the predictions for the Benchmark and the No Indexation

models. The bottom two panels compare the Benchmark and the Full Indexation models.

The two panels on the left use the standard prior while the two panels on the right use the

dummy observations prior with 10 dummy observations. In each panel the dark crosses (+)

and the lighter circles (O) represent draws from the Benchmark and the alternative model,

respectively. The dark and light lines show the median for the two models.

The left two panels show that under the standard prior all three models deliver inflation

persistence, although quantitatively the median autocorrelation for the No Indexation model

(0.72) is lower than for the Benchmark model (0.86) and for the Full Indexation model (0.93).

The right two panels show that under the dummy observations prior the difference between

the No Indexation and the Benchmark model in terms of inflation autocorrelation virtually

disappears, while the Full Indexation model still predicts slightly higher autocorrelation

than the other two models. Interestingly, under the standard prior all three models deliver

a negative contemporaneous correlation between inflation and the labor share, in contrast

with the prediction of the Phillips curve. Quantitatively the correlation is the more negative

the higher the degree of indexation. The dummy observations prior ameliorates this problem.

For the Benchmark and the No Indexation models roughly half of the draws in the right

hand panel display a positive correlation, while the median is still slightly negative for the

Full Indexation model.

The reason why the standard prior delivers a negative contemporaneous correlation

between inflation and the labor share is that under this prior mark-up shocks drive most of

the co-movement between inflation and the labor share. Recall that in this model the labor

share coincides with marginal costs. The mark-up shock λf,t is an important determinant

of marginal cost – in fact, the only determinant in absence of nominal rigidities. From

Equation (50) it is also clear that mark-up shocks directly impact inflation. A positive mark-

up shock raises inflation and lowers marginal costs, thereby creating a negative correlation

between the two.

The standard prior generates by construction reasonable magnitudes for the standard

deviations and autocorrelations of the endogenous variables in the Benchmark model, yet

generates this counterfactual implication for the cross-sectional moments. The Dummy

Observation prior recognizes the fact that this implication is counterfactual also in the pre-

sample data, which is used to generate the dummy observations, and modifies the prior

for the parameters of the exogenous shocks accordingly. Table 6 summarizes the prior

distributions for the shock parameters. The table shows that a key difference between the
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standard and the dummy observations prior consists in the AR(1) parameters for the λf,t

shock. Under the dummy observations prior the standard deviation of λf,t is substantially

lower, which implies that these shocks become less important in driving the co-movements

between inflation and the labor share under this prior. At the same time however the

persistence of the shock increases in all three models. As we have seen in the previous

section, mark-up shocks are important in delivering persistence in the labor share. As their

standard deviation decreases, their autocorrelation needs to increase to keep the persistence

of the labor share roughly unchanged. The autocorrelation of λf,t is somewhat smaller under

Full Indexation, which is consistent with the conjecture that the data can be matched with

a model without indexation but a fairly persistent mark-up shock.

Figure 7 depicts marginal likelihood differentials relative to the benchmark model. As

clear from the discussion in this section, the use of the dummy observations prior narrows

the gap between the models. In fact, with T ∗ = 10 dummy observations the No Indexation

and the Benchmark model have roughly the same marginal likelihood. The Full Indexation

model still delivers a lower marginal likelihood than the other two models even after the

correction, although the gap is far less than that obtained for the Flexible Wages and Flexible

Wages and Prices models.

6 Conclusion
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Table 1: Example – Prior Distributions

Name Domain Prior 1 Prior 2

Density Para (1) Para (2) Para (1) Para (2)

α IR+ Gamma 2.00 0.10 2.00 0.10

ρ [0, 1) Beta 0.50 0.05 0.73 0.10

σ IR+ InvGamma 1.00 4.00 1.00 4.00

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,

and Normal distributions; the upper and lower bound of the support for the Uniform distri-

bution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
.

The effective prior is truncated at the boundary of the determinacy region.

Table 2: Example – Log Marginal Likelihoods

Specification ln p(Y )

Model M1, Prior 1 -105.93

Model M2, Prior 1 -123.53

Model M2, Prior 2 -105.70

Model M1, Prior 3 -108.93

Model M2, Prior 3 -108.24

Notes: We truncate the prior distribution of α, ρ, σ at the boundary of the indeterminacy

region. The marginal likelihoods have been adjusted accordingly.
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Table 3: Prior Distribution for Taste-and-Technology Parameters

Support Density Mean StdDev 90% LB 90% UB

α [0,1) Beta 0.400 0.100 0.234 0.562

ζp [0,1) Beta 0.600 0.200 0.292 0.935

ιp [0,1) Beta 0.500 0.280 0.061 0.942

s′ R+ Gamma 4.000 1.500 1.561 6.248

h [0,1) Beta 0.700 0.050 0.620 0.782

a′′ R+ Gamma 0.200 0.100 0.049 0.349

νl R+ Gamma 2.000 0.750 0.784 3.138

ζw [0,1) Beta 0.600 0.200 0.290 0.937

ιw [0,1) Beta 0.500 0.280 0.057 0.936

r∗ R+ Gamma 2.000 1.000 0.457 3.473

ψ1 R+ Gamma 1.550 0.370 0.990 2.089

ψ2 R+ Gamma 0.200 0.100 0.048 0.349

ρr [0,1) Beta 0.500 0.200 0.168 0.825

π∗ R Normal 3.000 1.500 0.556 5.435

γ R+ Gamma 2.000 1.000 0.475 3.469

λf R+ Gamma 0.150 0.100 0.010 0.288

g∗ R+ Gamma 0.300 0.100 0.141 0.457

Ladj R Normal 252.0 10.00 235.7 268.6

Notes: The prior distributions for the taste-and-technology parameters are identical for both

the standard and the dummy observations prior. StdDev denotes standard deviation, LB

and UB refer to lower and upper bounds of a 90% credible interval. The following parameters

are fixed: δ = 0.025, λw = 0.3, F = 0. We assume that the taste-and-technology parameters

are a priori independent.
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Table 4: Prior for Shock Parameters – Benchmark Model

Standard Prior Dummy Obs. Prior

Density Mean StdDev Initial Mean StdDev

ρz Beta 0.400 0.250 Uniform 0.489 0.129

ρφ Beta 0.750 0.250 Uniform 0.692 0.194

ρλf
Beta 0.750 0.250 Uniform 0.843 0.120

ρg Beta 0.750 0.250 Uniform 0.597 0.278

σz InvGamma 0.376 0.194 1/σz 1.549 0.388

σφ InvGamma 3.755 1.955 1/σφ 5.392 2.646

σλf
InvGamma 0.376 0.194 1/σλf

0.191 0.086

σg InvGamma 0.626 0.323 1/σg 0.577 0.204

σr InvGamma 0.250 0.130 1/σr 0.398 0.115

Notes: StdDev denotes standard deviation. The support for the distributions of the auto-

correlation (standard deviation) parameters is [0, 1) (R+). The column Initial refers to the

(improper) prior that is used to pre-multiply the quasi-likelihood function for the dummy

observations. The results are based on T ∗ = 10.
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Table 5: Prior for Shock Parameters - Benchmark vs. Flex Prices / Wages Models

Standard Prior Dummy Obs. Prior Dummy Obs. Prior Dummy Obs. Prior

Baseline (106) Flex. Wages (105) Flex. Wages, Prices (104)

Mean StdDev Mean StdDev Mean StdDev Mean StdDev

ρz 0.400 0.250 0.489 0.129 0.332 0.118 0.326 0.122

ρφ 0.750 0.250 0.692 0.194 0.769 0.199 0.586 0.338

ρλf
0.750 0.250 0.843 0.120 0.799 0.146 0.884 0.067

ρg 0.750 0.250 0.597 0.278 0.840 0.204 0.922 0.141

σz 0.376 0.194 1.549 0.388 1.613 0.371 1.667 0.405

σφ 3.755 1.955 5.392 2.646 1.901 0.783 1.832 0.918

σλf
0.376 0.194 0.191 0.086 0.230 0.084 0.732 0.172

σg 0.626 0.323 0.577 0.204 0.789 0.406 0.822 0.320

σr 0.250 0.130 0.398 0.115 0.410 0.101 0.414 0.132

Notes: StdDev denotes standard deviation. The support for the distributions of the au-

tocorrelation (standard deviation) parameters is [0, 1) (R+). See Table 4 for the marginal

densities of the benchmark prior and the (improper) prior that is used to pre-multiply the

quasi-likelihood function for the dummy observations. The results are based on T ∗ = 10.
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Table 6: Priors for Shock Parameters – Benchmark vs. Restricted Indexation Models

Standard Prior Dummy Obs. Prior Dummy Obs. Prior Dummy Obs. Prior

Baseline (106) No Indexation (101) Full Indexation (107)

Mean StdDev Mean StdDev Mean StdDev Mean StdDev

ρz 0.400 0.250 0.489 0.129 0.490 0.125 0.459 0.127

ρφ 0.750 0.250 0.692 0.194 0.688 0.204 0.614 0.235

ρλf
0.750 0.250 0.843 0.120 0.872 0.089 0.838 0.130

ρg 0.750 0.250 0.597 0.278 0.625 0.287 0.573 0.280

σz 0.376 0.194 1.549 0.388 1.628 0.393 1.724 0.499

σφ 3.755 1.955 5.392 2.646 5.289 2.837 7.252 4.844

σλf
0.376 0.194 0.191 0.086 0.157 0.056 0.209 0.079

σg 0.626 0.323 0.577 0.204 0.570 0.241 0.543 0.195

σr 0.250 0.130 0.398 0.115 0.398 0.109 0.429 0.109

Notes: StdDev denotes standard deviation. The support for the distributions of the au-

tocorrelation (standard deviation) parameters is [0, 1) (R+). See Table 4 for the marginal

densities of the benchmark prior and the (improper) prior that is used to pre-multiply the

quasi-likelihood function for the dummy observations. The results are based on T ∗ = 10.
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Table 7: Log Marginal Likelihoods ln p(Y )

Specification Standard Dummy Obs. Prior

Prior T ∗ = 4 T ∗ = 10

Baseline (106) -611.95 -611.02 -614.31

Flexible Wages (105) -635.18 -624.53 -631.05

Flexible Wages and Prices (104) -677.31 -664.46 -667.07

No Indexation (101) -612.58 -611.56 -614.53

Full Indexation (107) -620.34 -616.06 -619.42

Notes: The marginal data densities are computed based on quarterly U.S. data ranging

from QI:1981 to QIV:2005.
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Figure 1: Example - Predictive Distributions of Sample Moments

Notes: Each panel depicts 200 draws from predictive distribution for the sample auto-

correlation and standard deviation. Intersection of solid lines signifies the actual sample

moment.
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Figure 2: Priors for Benchmark Model – Shock Parameters
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Notes: Each panel depicts draws from the prior distribution of the shock parameters. Black

crosses indicate draws from the standard prior, whereas grey circles correspond to draws

from the dummy observations prior.
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Figure 3: Priors for Benchmark Model - Sample Moments
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Notes: Each panel depicts draws from the prior predictive distribution of various sample

standard deviations, calculated based on 100 artificial observations from the DSGE model.

The intersection of the red dotted lines signifies the sample standard deviations computed

from the pre-sample that is used to generate the Γ matrices for the dummy observations

prior.
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Figure 4: Nominal Rigidities: Benchmark versus Flex Wages / Prices Model
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Notes: Each panel depicts draws from the prior predictive distribution of the autocorrelation

of inflation and the labor share, calculated based on 100 artificial observations from the

DSGE model. Black cross correspond to draws from the Benchmark model, whereas green

circles denote draws from the flexible price / wage models. The intersection of the solid

black and dashed green lines signifies the median of the prior predictive distributions.
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Figure 5: Impulse Response Functions - Flexible Wages vs. Flexible Wages and Prices
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Notes: The left (right) column depicts prior mean responses of the labor share (inflation)

to the five structural shocks. Solid lines correspond to flexible wage model, dashed lines

signify responses of the flexible wage and price model.
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Figure 6: Phillips Curve Relationships: Benchmark versus Restricted Indexation

Standard Prior, No Indexation Dummy Obs. Prior, No Indexation
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Notes: Each panel depicts draws from the prior predictive distribution of the autocorrelation

of inflation and the labor share, calculated based on 100 artificial observations from the

DSGE model. Black cross correspond to draws from the Benchmark model, whereas green

circles denote draws from the flexible price / wage models. The intersection of the solid

black and dashed green lines signifies the median of the prior predictive distributions.
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Figure 7: Marginal Likelihoods relative to Benchmark

Nominal Rigidities
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Notes: Each panel depicts log marginal likelihood differences with respect to the benchmark

specification. Negative values indicate that the benchmark model attains a higher marginal

likelihood. “0” refers to the standard prior, whereas “4” and “10” refer to the dummy

observations prior with T ∗ = 4 and T ∗ = 10, respectively.


