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Private Settlement in Blockchain Systems

Abstract

We provide evidence that the settlement market in blockchain systems is not trans-
actional and diverges from a simple competitive auction model. Examining the Bitcoin
blockchain, 5.88% of transactions, which we label as private, bypass the competitive auc-
tion and are channelled directly to miners. Despite being more active than the average user,
their transactions are confirmed by one miner, which is a statistically unlikely outcome in
a competitive auction. Our findings suggest that high-demand users engaging in long-term
agreements with miners paying on average, 20% lower fees. We document how settlement
contracts are structured in an unregulated market.

Keywords: Blockchain Technology, Bitcoin, Settlement, Distributed Ledger, Cryptocurrency, Private
Settlement, Contract
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1 Introduction

The Economist magazine recently reported the Ethereum blockchain alone settled transactions

worth 2.5 trillion dollars in the second quarter of 2021, roughly the same amount as the Visa

network.1 The premise that decentralized blockchain systems improve efficiency relies on the

assumption of a competitive market for settlement of transactions. Nevertheless, very little is

known about the settlement agreements that endogenously emerge in an unregulated market

with free entry. It is wildly believed that blockchain settlement fees are determined by an

auction, in which users attach fees to their transactions, and competitive miners include the

transactions with the highest bids in a block and thus settle them. This market is understood to

be transactional in nature.

This paper provides evidence consistent with some users and miners bypassing the compet-

itive auction and forging private, exclusive, long-term settlement agreements with miners. We

study Bitcoin, which is the oldest and most valuable cryptocurrency. At the time of writing this

paper, Bitcoin’s market cap is larger than all other cryptocurrencies combined.2

Under Bitcoin’s original design, users post transactions to a public Mempool from which

miners can pick transactions to include in blocks. We document that almost six percent of settled

transactions have never appeared in the Mempool and, thus, have not followed the standard

settlement process. We argue that miners receive them from private channels outside of the

Bitcoin system. One potential reason for the existence of these channels is risk sharing. On the

one hand, miners are exposed to variations in average fees and transaction demand while facing

fixed operations costs. Small miners rarely find a new block and could face a sparse Mempool

or low fees when they win the block, resulting in low revenue. Securing a long term order flow

through a private channel allows the miner to collect a fixed minimum amount of fee revenue

1https://www.economist.com/leaders/2021/09/18/the-beguiling-promise-of-decentralised-finance
2https://www.visualcapitalist.com/Bitcoin-market-cap-compared-to-crypto/
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irrespective of the size of the Mempool or the current average fee rate.3 On the other hand users

with a high demand for regular transactions like centralized exchanges or layer 2 protocols face

uncertainty on the fees they need to pay to get their transactions mined, creating a risk-sharing

opportunity between small miners and regular users using long-term contracts at fixed prices.

Many users need to post transactions frequently. Large centralized exchanges, like Binance

or Coinbase, for example, have so many clients who want to deposit or withdraw funds that

they have a very predictable transaction demand.4 Layer two (L2) protocols that are built on

top of Bitcoin often run a less secure blockchain but periodically post the state of their chain

onto the Bitcoin blockchain to benefit from Bitcoin’s high security. These L2s have highly

predictable, regular transaction demand. For example, Stackchain posts its daily status on the

Bitcoin blockchain approximately every 100 Bitcoin blocks. 5

Using a sample of over a hundred million transactions, we document that private transac-

tions pay lower average fees and exhibit lower fee variation. Using a standard algorithm, we

attribute the individual transactions in our sample to 59 million users. Users of private transac-

tions are more likely to insert data into the blockchain as it is done by various L2 protocols with

regular transaction demand. We document that users of private transactions post regular and

evenly-spaced transactions on the Bitcoin blockchain. On average, users of private transactions

in our sample post 566.22 transactions compared to 34.68 transactions for regular users. De-

spite being more active, private users use only 1.02 distinct miners to process their transactions,

while normal users’ transactions are, on average, mined by 9.73 distinct miners.

We show that smaller miners are more active in the market for private transactions and

3This risk is orthogonal to the uncertainty on how many blocks a miner can find in a given time which is
analyzed in Cong, He, and Li (2021).

4Clients deposit their Bitcoin typically in a one-time wallet that is created specifically for that deposit. Once
the funds are cleared and it is verified that they do not come from a sanctioned address or an address that has
been involved with known illicit activity, the exchange then moves the funds to their own wallet in a secondary
transaction.

5https://gaia.blockstack.org/hub/1AxyPunHHAHiEffXWESKfbvmBpGQv138Fp/stacks.pdf, see an example
transaction ’7b540ef6983fe904456c7e6a96d051595b2470379a7cc14e3aa0e6de503a7b58’
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document that private transactions smooth miners’ per-block and monthly incomes. We rule

out several alternative explanations. In a series of tests, we rule out longer waiting times for

private transactions as the source of lower fees. We also show that private transactions are

not of lower priority as miners forgo in some instances the inclusion of higher-paying public

transactions to fulfill their commitment to their private users. Finally, we document that private

users occasionally switch their designated miner which usually results in lower fee payments

for the user, indicating that there is a market for private settlement contracts.

Anecdotal evidence is consistent with the existence of private transaction channels. For

example, Bitcoin SV developed an API freely available on GitHub that allows users to interact

directly with miners. On their website, they advertise that their product allows for “Direct

transaction submission: This allows users to bypass the outer layers of the Bitcoin peer-to-peer

network and submit transactions directly to miners.”6 Their product also allows for “User-based

fee policies to enable different fee structures for different use cases.” Other forum posts also

discuss how to pass transactions to specific mining pools by forwarding them directly to a node

run by the pool. The pool can then decide whether or not to share these transactions with other

nodes.7

Our research underscores the complexities of settlement markets with users with heteroge-

neous transaction demand and settlers with different market shares. In such a setting a sim-

ple auction mechanism as it was envisioned by Bitcoin’s founder and as it is used in most

blockchains today may not span the space of optimal contracts that form endogenously between

users and settlers. Both users and miners find gains from trade by bypassing the protocol’s de-

fault settlement mechanism. Since blockchains are not regulated the set of possible settlement

contracts can not be restricted to the simple auction and an ’outside market’ has developed that

allows users to enter more complex contracts. This observed price discrimination highlights the

6https://bitcoinassociation.net/bitcoin-sv-miner-id-and-merchant-api-beta-release/
7https://bitcoin.stackexchange.com/questions/5337/how-do-i-send-a-transaction-directly-to-a-miner-or-pool-

for-processing
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emergence of different tiers of service within the Bitcoin settlement market, where users with

higher transaction volumes or strategic relationships with miners pay lower fees and face less

uncertainty. In a free market for settlement, the endogenously emerging fee structure is far more

complex than the fee structure we see in regulated traditional financial markets.

Dark pools and electronic communication networks (ECNs) offer a mechanism to bypass

the public trading venues in traditional financial markets. Menkveld, Yueshen, and Zhu (2017)

describes the ”pecking order” hypothesis for selecting trading venues. Investors sort dark and

lit venues when executing orders by associated costs, like bid-ask spread, price impact, infor-

mation leakage, and immediacy. They show that dark venues are at the top of the pecking order.

Like private transactions in Bitcoin, dark pool transactions reduce trading costs (Hu, Jones, and

Zhang 2021). In the United States, this type of transaction executed approximately 13.66% of

the equity volume in November 2021.8 However, the primary reason for utilizing dark pools

differs from our setting. Dark pools lessen the negative price impact of large orders. In Bitcoin,

there is no price impact of transactions, nor is there price discovery as the blockchain is used to

settle previously contracted Bitcoin transfers. Brogaard, Carrion, Moyaert, Riordan, Shkilko,

and Sokolov (2018) demonstrate the impact of dark pool transactions on price discovery that

leads to inefficient information acquisition and lack of transparency. They also study the mech-

anism of ECNs and highlight several attractions for both buyers and sellers in ECNs trading.

Without a broker-dealer system, both sides can eliminate bid-ask spread limits and communi-

cate privately through the direct link, with lower costs. ECNs are attractive for higher trade

speed and anonymity in this infrastructure. While previous research documented deviations

from competitive behaviour in transaction settlement on blockchain markets, this paper is, to

the best of our knowledge, the first one to document that some users bypass the competitive

settlement market. We find evidence consistent with price discrimination where some users

who settle many transactions and frequently use the system get a different price than infrequent

users. This finding casts doubt on whether all users of decentralized systems can equally benefit

8https://www.rblt.com/market-reports/let-there-be-light-us-edition-31
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from any cost savings this new technology will bring.

Our paper is part of the nascent literature on settlement in unregulated markets. In the

original Bitcoin, paper (Nakamoto 2008) assumes as the first step to run the network that new

transactions are broadcast to all nodes. Competitive mining is the standard assumption in

many works on the Bitcoin network. Easley, O’Hara, and Basu (2019) model the emergence

of fees in blockchain systems. Lehar and Parlour (2022b) examines the potential for miners

to implicitly collude by strategically managing the effective capacity of the blockchain. They

argue that miners’ prices discriminate among users to increase fee revenue. Huberman, Leshno,

and Moallemi (2021) argue that keen users post higher fees to get their transaction included

in the next block when there is uncertainty on the block’s arrival time. Both papers assume

that all transactions pass through the Mempool and assume a one-off transactional relationship

between miners and users. Our paper explores a novel mechanism where transactions bypass

the Mempool altogether, and users and miners can sign long-term contracts.

Our paper is related to a literature review concerning regulation in settlement systems. Cur-

rently, settlement is highly regulated and often performed by the government near entities that

offer their services at a flat price for every participant. Blockchain systems open a private settle-

ment market where users offer miners fees to confirm their transactions (Auer (2019) and Hal-

aburda, Haeringer, Gans, and Gandal (2022)). Schmiedel, Malkamäki, and Tarkka (2006) model

the traditional settlement markets considering tight regulation in financial markets. Russo, Hart,

Malaguti, and Papathanassiou (2004) examine conflicts of interest typically arising in the se-

curities settlement infrastructure and propose improvements in regulation. We augment this

literature by examining a competitive and unregulated settlement market.

The Bitcoin blockchain is an ideal setting to study private settlement markets in the absence

of transaction ordering issues that exist in other blockchain systems. In Bitcoin, the ordering of

transactions within a block is irrelevant. This is not the case in Ethereum, where users interact

with smart contracts based on the order in which the transactions are recorded in the block,
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which creates opportunities for front-running (Strehle and Ante 2020). Daian, Goldfeder, Kell,

Li, Zhao, Bentov, Breidenbach, and Juels (2019) document several ways in which users can

benefit from strategically placing their transactions ahead of the ones from other users. Park

(2021) discusses front-running for automated market makers in such systems. Daian, Goldfeder,

Kell, Li, Zhao, Bentov, Breidenbach, and Juels (2020) demonstrate how miners in Ethereum can

strategically alter the ordering of transactions or execute other users’ transactions in their name

for financial gain; they pocket the so-called Miner Extractable Value (MEV). Lehar and Parlour

(2022a) document that fees do not sort 80% of blocks on Ethereum and that miners collect

over a million USD per day from prioritizing some transactions. These opportunities for miners

to extract rents are absent in Bitcoin as it offers no smart contract ability, and the ordering of

transactions within a block is irrelevant.

We find that private users pay lower than average fees for Bitcoin private settlement, while

in Ethereum, users pay higher transaction fees to front-run the existing transaction and claim the

profits of the arbitrage transaction. Moreover, Weintraub, Torres, Nita-Rotaru, and State (2022)

shows that powerful miners are interested in profiting from such opportunities in Ethereum. In

contrast, our findings suggest that miners with smaller market shares have incentives to partici-

pate in a private settlement.

2 The Bitcoin System and Private Transactions

Transactions transfer Bitcoin between wallets. A transaction involves at least one sender and

one receiver.9 The former digitally signs a transaction to verify that she is the rightful owner

of the Bitcoin and propagates her request through the decentralized peer-to-peer network of

9Each Bitcoin transaction can have many inputs and many outputs. The inputs are amounts of Bitcoin individ-
ually locked up by a locking script. The sender can unlock all these inputs and transfer funds to output addresses,
which do not necessarily belong to the same owner. The process is similar to making a $23 payment with a $20
and a $5 bill (2 inputs) and giving $23 to the merchant and keeping $2 in change (2 outputs).
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Bitcoin nodes. These pending transactions constitute the Mempool (or Memory pool). Theo-

retically, each node could see a different set of pending transactions. Recent innovations such

as the fibre network or BIP152 allow rapid transmission of blocks, which ultimately benefits

the overall transaction processing and confirmation time in the Bitcoin network. Latency is no

longer a practical problem. Empirical results from computer science, for example, Dae-Yong,

Meryam, and Hongtaek (2020) show that Mempools are practically identical.10

Miners pick pending transactions from the Mempool to be included in a block. Users can at-

tach fees to their pending transactions that the miners can keep when they include the transaction

in a block. The Bitcoin protocol has been designed with the idea that all pending transactions

go through the Mempool and are ordered based on the aging algorithm in which old and high-

fee inputs have higher priority over newer transactions that offer smaller fees. The miners then

solve a computationally complex puzzle to create a valid block which can be added to the chain.

In practice, however, miners have complete discretion on which transactions to include in a

block. Specifically, they can include transactions that did not go through the Mempool. Users

can contract privately with individual miners and forward transactions directly to them (outside

the peer-to-peer network). Miners can then include these transactions in a block they will mine.

We label such transactions that bypass the Mempool as private transactions. Private transactions

are not visible to other miners; thus, their fees accrue exclusively to the miner who confirms

that transaction.

We argue that miners and users with high transaction demand are incentivized to contract

for a fixed fee for risk-sharing. Miners who face medium-term fixed costs for electricity and

infrastructure are concerned about variations in future fee revenue. Users with predictable trans-

action needs are similarly worried about changes in fees. This risk-sharing motive differs from

the risk regarding the number of blocks mined in a given time interval.11

10Moreover, many of our results are independent of latency; for example, latency cannot explain why private
users always match with the same miner or why they pay lower fees.

11Xue, Xu, Wu, Lu, and Xu (2021), and Cong, He, and Li (2021) discuss and analyze the incentives for rational
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To illustrate our point, assume that mining fee revenue varies over time and can either be

high or low with equal probability. Variations in fees may be induced by changes in demand

for transactions by users, variations in the utility that users place on getting their transactions

included in the blockchain, or by the random arrival time of blocks. A miner could solve the

puzzle immediately after a previous block was found, in which case there might be fewer trans-

actions waiting for the Mempool, and hence, the miner’s fee revenue might be lower. Specifi-

cally, assume that a miner can obtain fees worth f or 0 upon finding a block.

Miners are risk-neutral and mine a fixed number of ν blocks in a given period. To introduce a

motive for risk sharing, assume that miners are in financial distress and face a loss of l whenever

they only mine blocks where the fee revenue is low within a period. One can think of a situation

where the miner cannot pay for the electricity costs with the incoming fee revenue and has to

obtain costly external financing. The probability of financial distress is then

p =
1

2ν
(1)

The expected profit of a miner of size ν who takes transactions with an expected fee of f/2 per

block from the Mempool and is exposed to fee risk is, therefore:

πm = ν
f

2
− pl = ν

f

2
− 2−νl (2)

In contrast, a miner who would sign an agreement with a user to mine a certain number of

transactions for a fixed fee revenue c can obtain a stable flow of fees and thus avoid financial

distress. She obtains

πc = νc (3)

miners to share risk and form pools. A pool will reduce the uncertainty around the number of mined blocks.
Participants share the cost of finding a new block and the revenue proportional to their contribution.
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Solving for the fixed fee revenue c∗ that makes the miner indifferent, we obtain

c∗ =
2−ν−1(2νfν − 2l)

ν
=
f

2
− l

ν2ν
(4)

which is increasing in ν. Figure 1 illustrates the fee revenue as a function of miner size ν for an

example.

Figure 1. Fixed fee revenue c∗ at which a miner would be indifferent between fixed and variable
revenues as a function of miner size ν. The parameters are f = 5, l = 10.

fi
x
ed

fe
e
re
v
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u
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From this simple toy model, we can derive several empirical predictions. Miners will offer

lower fees in exchange for a fixed or less volatile guaranteed fee flow. We, therefore, expect

private transactions to have lower and less variable fees. As illustrated in Figure 1, smaller

miners face higher uncertainty over fee revenue and are thus willing to offer a lower fee for pri-

vate transactions. We, therefore, expect that smaller miners will be more engaged in processing

private transactions and offer them at a lower fee.
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It only makes sense for a miner to enter a risk-sharing agreement with a user who has a

steady demand for transactions. Retail users posting occasional transactions cannot provide

a steady flow of fees for the miner to make a long-term contract useful. We, therefore, expect

users who engage in private transactions to post more transactions than an average user and post

the transactions more regularly than other users. An example of users with a high transaction

demand is Layer 2 protocols or side chains synchronizing to the Bitcoin blockchain, such as

the Omni-layer, Rootstock, Stacks, or the Liquid Network.12 These systems use data insertion

transactions identified by using the data insertion operation code “OP RETURN” in the Bitcoin

lock script. We, therefore, predict that users who utilize data insertion transactions are more

likely to post private transactions. When miners and users enter such an agreement to mine

private transactions, we expect users of private transactions to have all their transactions mined

by one miner.

3 Data

To trace transactions from their origination to their confirmation, we combine Mempool and

blockchain data. For the former, we set up Bitcoin nodes on two separate instances in the

Compute Canada cloud and take snapshots from the Mempool every minute. These snapshots

include all transactions that wait to be confirmed at that given time. Their unique hash value

identifies transactions. We collect blockchain data on transactions mined into blocks directly

from a modified Bitcoin node. We know when and in which block it was mined for each

transaction. We identify miners based on a unique text most mining pools put in the input script

portion of the coinbase transaction, the first transaction of each block that grants the miner

12Such systems keep information in a separate ledger, often an independent blockchain, and regularly post a
hash of their state to the Bitcoin blockchain. Users of the side-chain or meta-layer can, therefore, verify the
system’s state by verifying the state with the posted state on the Bitcoin blockchain. These systems take advantage
of Bitcoin’s security and assure consensus, at least at the points in time when the state is posted to the Bitcoin
blockchain. One example of such a meta layer is the Omni-layer, which allows the creation of tokens and was, for
a long time, the main home of the USD stablecoin Tether.
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newly minted Bitcoin as a reward for finding a block. We describe our dataset in three parts:

transactions, miners, and users.

3.1 Transactions

Our sample consists of 97,637,471 confirmed Bitcoin transactions for 2021. We collect senders,

receivers, the amounts sent, and the fee paid to the miner for each transaction. The definition

of the variables and measures in this study are reported in Table 15 in Appendix A. We classify

a transaction as normal if it is observed in the Mempool before being mined into a block. For

those transactions, we record the timestamp when the transaction entered the Mempool and

when it was mined. Transactions that never enter the Mempool but still get recorded on the

blockchain are identified as private transactions. We collect one-year of Mempool data from

the 1st of January 2021 to the 1st of January 2022. We tag transactions based on their state

as either pending or confirmed, where pending transactions are still waiting in the Mempool to

be added to a block by a miner. We observe 93,374,343 Mempool transactions in our sample

period, most of which are eventually confirmed. When a miner confirms a transaction, it will

be added to a block and removed from the Mempool. Table 1 reports the summary of statistics

for transactions in our sample.

We define the waiting time as the difference between the block number in which the trans-

action was included and the highest block number when the transaction entered Mempool. We

do not measure the delay based on timestamps, so random fluctuations in times between blocks

do not drive our delay measure. On average, transactions wait for 6.66 blocks in the Mem-

pool. Some transactions get confirmed immediately; the longest time a transaction waited in

the Mempool was for 23 blocks. In our sample, the Mempool is never empty; therefore, we

observe positive delays. Our findings are consistent with Pappalardo, Di Matteo, Caldarelli,

and Aste (2018), who document an average delay of 6 blocks. The waiting time for private
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transactions is not observable as they do not reside in the Mempool; instead, they are transmit-

ted to miners through private channels. To gauge the waiting time for private transactions, we

assume that private transactions arrive randomly at the user’s designated miner and get included

in the next block that she composes. As a proxy for waiting time, we therefore measure half

the distance between blocks that are mined by the designated miner. We observe an average

waiting time for private transactions of 5.51 blocks, roughly the same order of magnitude as for

normal transactions.

Items Confirmed Transactions
Number of Days 365
Start Date 1/1/2021
End Date 31/12/2021

Transactions 97,637,471
Mixers’ Transactions 107,639
Miners’ Transactions 152,556
Private Transactions 5,738,085

Number of Blocks 52,686
First Block 663,913
Last Block 716,598

Maximum Fee (Sats) 1.83e+08
Average Fee (Sats) 21,940.77
Fee Variation (Sats) 2.18e+10

Table 1. Transactions Summary Statistics This table reports the summary of statistics for the 2021
sample. The Confirmed Transactions are recorded in the chain by miners. Fees are in Satoshi. One
bitcoin is 100,000,000 Satoshis.
The number of total confirmed transactions before removing mixers and miners is 97,796,453.

3.2 Miners

For each block, we record the mining pool, block height, weight, and creation time. We report

a summary of statistics on mined blocks in Table 1. We identify 28 miners for 91.16% of the
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blocks in our sample based on the input section of the coinbase transaction.13 We label miners

in the highest quantile of mined blocks as big and the remaining miners as small. Table 2 shows

the market share classification of the mining pools in our sample.

Mining Pools Block Mined Market Share Category
F2Pool 6,695 15.65 Big
AntPool 6,504 15.20 Big
poolin 5,342 12.49 Big
ViaBTC 4,799 11.22 Big
binance 4,644 10.86 Big
BTC.com 3,965 9.27 Small
foundry usa 2,428 5.67 Small
Huobi 2,010 4.70 Small
SlushPool 1,786 4.17 Small
1THash 1,110 2.59 Small
WAYI.CN 689 1.61 Small
SBICrypto 530 1.23 Small
(15 others) 405 5.28 Small

Table 2. Mining Pools’ Market Share in 2021 The market share per mining pool is calculated based
on the number of blocks they mined in 2021 divided by the total blocks mined by all miners in the same
period. Miners in the top quantile are classified as Big.

Mining is a concentrated industry. The five big miners have 65.42% of the market. F2Pool,

Antpool, Poolin, ViaBTC and Binance are our sample’s top five mining pools. We rank mining

pools based on their mined blocks divided by the total blocks mined in a year.

3.3 Users

To study user behaviour, we use a standard algorithm from the computer science literature, the

Union Find Algorithm which is explained in detail in Appendix B. We map 300,147,341 input

wallet addresses to 59,086,692 distinct users.

Some transactions on the Bitcoin blockchain are initiated by miners, for example, when they

13In some cases, we are unable to attribute the block to certain miners. We report the small or undetectable
mining pools in our one-month sample as ’Other.’
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pay mining rewards to their pool members. These transactions can be different; for example,

miners will likely mine their own transactions as they do not want to pay fees to other miners.

We define users as miners if they collect fees or block rewards in one of their wallet addresses.

We exclude miner transactions from our empirical analysis. We also exclude transactions from

mixers, who on purpose try to obfuscate users’ identities by purposefully combining transac-

tions from multiple users. Details can be found in Appendix B.

Users who engage in private submissions send 95.78% of their total transaction demand

through the private channel. We classify users engaged in at least one private transaction with a

miner as private users, while all other users are denoted as normal. Our classification algorithm

identifies 3,408,352 private users and 55,678,340 normal users in our sample. Consequently,

5.76% of the users in our dataset are categorized as private. Moreover, 88.92% of private users

exclusively conduct transactions through private channels.

Private transactions are not equally distributed across pools. Two pools, KanoPool and Ck-

pool, stand out, with 10.56% and 4.12% of their confirmed transactions being private, respec-

tively. These pools are also the two smallest pools in our sample. Table 3 presents summary

statics per user group. Consistent with our predictions, on average private users pay lower fees

and have lower fee variation than normal users. Average fees are 10.42 and 12.82 for private

and normal users, respectively. Therefore, private users pay lower fees compared to normal

ones by 18.72%. The average private user is more active, with 566.22 transactions compared to

34.68 transactions for normal users. Yet, on average, their transactions are mined by only 1.02

miners. If miners and users are competitive, transactions are randomly allocated to multiple

miners based on their mining capacity. The probability that a user gets randomly allocated to

the same miner for n transactions is pn, where p is the market share of a miner. Even for the

largest pool with a market share of 15.28%, the probability that a user gets allocated to the same

miner for five transactions is 0.0083%. We also see that users of private transactions insert more

data into the blockchain, which is consistent with the idea that they are frequent users, such as
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layer two protocols.

We define the active period for each user as the time difference between the user’s first and

last transactions in our sample. To measure fees, we use the fee per weight unit. For miners,

the opportunity cost of a transaction is determined by its physical size in bytes, as block size

is limited. With the introduction of SegWit (segregated witness), parts of the scripts can be

outsourced to the witness section, which does not count toward the physical block limit. The

SegWit update thus introduced weight units for the measurement of transaction size as weight

considers how effectively a transaction utilizes the witness section. Private users post larger

transactions with 45.07% more weight units on average. Normal users and private users are

waiting for almost the same amount of time, with 101.60 blocks for normal users and 108.71

blocks for private users, respectively.

4 Empirical Findings

4.1 Average Fee

We expect users who contract long-term with one miner to pay lower fees as the miner replaces

a risky cash flow with a safe cash flow and is willing to charge a lower fee. We consider the

fee paid per weight unit as our measure of the transaction fee as limited block space causes

transaction weight to be the opportunity cost for the miner. To make the result more robust

toward outliers, for the econometric analysis, we winsorize the fee per weight and the total

input value of the transaction at the 99 percentile.

(5)FeeperWeight = α0 + α1PrivateDummy + α2SumInputs + α3BlockSize
+ α4TxCount + α5TxWeight + α6WaitTime + ε

We regress fee per weight on a dummy for private transactions and control variables as
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Items (Mean) Normal Private
Fee per Weight 12.82 10.42
Number of Transactions 34.68 566.22
Number of Wallet Addresses 92.09 61,136.59
Active Period (Months) 3.47 9.22
Transaction Weight 1,867.07 1,905.98
Sum Inputs (Billion) 1.01 1.14
Miner Count 9.73 1.02
Data Insertion (%) 1.38 5.75
Waiting Time (Blocks) 101.60 108.71

Table 3. User Group Types Summary Statistics The summary of statistics for each criterion is
calculated on average for each user group. Fee per Weight is the measure of comparing fees in each
user group type. Number of Transactions is the number of transactions submitted by each user group
type. Number of Wallet Addresses is the distinct number of wallets that each user group uses. The Active
Period is the number of blocks between the first and the last observation for transaction submission per
user and is reported by month. Transaction Weight is the variable indicating the size of each submitted
transaction by users. The Sum Inputs represents the sum of input values measured in BTC, which
represents transfers between the sender and receiver and indicates the value of a transaction. Miner
Count is the number of distinct miners that confirm the transactions for each type of user. Data Insertion
is the percentage of data insertion transactions to the total transactions submitted by each user type.
The Waiting Time for private users is calculated based on the waiting time proxy of their designated
miners per confirmed transaction, while for normal users, it is the precise duration between entering the
Mempool and receiving confirmation in the blockchain. We exclude miners’ and mixers’ transactions to
address sample selection bias.

shown in Equation 5. We present our results in Columns (1), (2) and (3) of Table 4. We

find that private users pay on average 2.6 satoshi/weight unit less than normal users. For a

typical transaction with 1869.357 weight units, this amounts to 4860.328 sat or 2.27 USD,

when converted at the average bitcoin price of 47,438.67 USD/BTC in our sample. On average,

private users post 566.22 transactions per year in our sample, resulting in a savings of 1,282.84

USD compared to normal users.

We control for the sum of input values in BTC, which measures the monetary value of the

transactions, transaction weight, the size of the block, the number of transactions and waiting

time. We cluster the standard errors per block and user to control for heterogeneity in fee
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variation. The relationship between the private dummy and the fee per weight is negative and

significant. Consistent with our hypothesis, we find that private transactions are cheaper than

normal ones.

Table 4. Fee per Weight Analysis The PrivateDummy is a dummy set to one if a transaction is sent
from a user who utilizes private transactions and is zero otherwise. The regressions in columns (1), (2)
and (3) are at the transaction level and the standard errors are clustered at block level. The dependent
variable is Fee per Weight. The control variables are Sum Inputs, Block Size and TX Weight. In column
(3) we remove the unknown miners from the sample and we add the Wait Time proxy to control for
waiting time. The standard errors for regressions in columns (4), (5), and (6) are clustered at user level,
and the dependent variable is Std Fee per Weight. The TX Count is the number of transactions submitted
by a user. TX Weight is the weight of a transaction. The Tx Count * PrivateDummy is the interaction
term of TX Count and PrivateDummy. This measure captures the effect of increasing the number of
transactions on Fee per Weight if the submitting user is Private. The control variables are Sum Inputs,
Block Size, TX Weight and Wait Time.

(1) (2) (3) (4) (5) (6)
Fee per Weight Fee per Weight Fee per Weight Std Fee per Weight Std Fee per Weight Std Fee per Weight

Private Dummy -2.604∗∗∗ -2.584∗∗∗ -2.485∗∗∗ -0.0360∗∗∗ -0.0330∗∗∗ -0.0245∗∗∗

(-14.99) (-38.27) (-14.25) (-4.48) (-4.14) (-3.65)

Sum Inputs 7.91e-12∗∗∗ 8.21e-12∗∗∗ -1.20e-13∗∗∗ -1.10e-13∗∗∗

(10.89) (47.20) (-4.22) (-4.42)

Block Size 0.000000607∗∗∗ 5.58e-07∗∗∗ 0.000000177∗∗∗ 0.000000170∗∗∗

(11.04) (3.36) (24.48) (24.42)

TX Count -4.06e-09 7.21e-09∗∗∗

(-1.21) (2.96)

TX Count* PrivateD -0.0000002 ∗∗∗

(-3.33)

TX Weight -0.0000284∗∗∗ -0.0000311∗∗∗ -0.00000179∗∗∗ -0.00000178∗∗∗

(-7.07) (-71.42) (-7.67) (-7.66)

Wait Time -3.32e-06 4.12e-06
(-0.78) (0.82)

Constant 12.92∗∗∗ 11.93∗∗∗ 12.12∗∗∗ 0.00214∗∗∗ -0.229∗∗∗ -0.219∗∗∗

(206.00) (88.63) (59.55) (4.41) (-23.51) (-23.72)
Observations 97,637,471 97,637,471 81,303,198 59,086,692 59,086,692 59,086,692
R2 0.582 0.677 0.602 0.524 0.613 0.622
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

19



4.2 Fee Variation

To study the impact of long-term contracts on fee variation, we need to study fees on a per-user

basis. We, therefore, compute the standard deviation of fees for each user we identify in our

sample. Our regression, presented in Equation (6), follows the specification in the previous sec-

tion. We present our findings in Table 4 in columns (4), (5) and (6). In line with our hypothesis,

we document that the variation of fees for private users is significantly lower than for normal

users.

Fee Variation = α0 + α1PrivateUserDummy + α2TxCount + α3TxCount*PrivateUserDummy
+ α4SumInputs + α5BlockSize + α6TxWeight + α7WaitTime + ε

(6)

In Column (6), we add an interaction of transaction count, the number of transactions a user

posts, and the private dummy, which we find negative and significant, This finding is consistent

with fee variation being lower for private users that post more transactions. For normal users,

we observe the opposite, as the coefficient of transaction count is positive and significant.

4.3 Same Miner Likelihood

If private users have an underlying contract with a settlement agent, we expect all of their

transactions to be confirmed by the same miner. Since private transactions never enter the

Mempool, other miners cannot include these transactions in their blocks. We count the number

of distinct miners that process the users’ transactions for each user. We regress the private

dummy on the number of unique miners and control variables as detailed in Equation 7.

Our findings in Table 5 highlight that private transactions are confirmed by fewer miners.

The coefficient of the distinct miner count is negative and significant. Our findings are consistent

with the summary statistics in Table 3 that show private users’ transactions are mined on average

by 1.02 distinct miners while normal users’ transactions are confirmed by 9.73 distinct miners.

20



Our evidence is consistent with our hypothesis that private users forge long-term exclusive

contracts with mining pools.

(7)PrivateUserDummy = α0 + α1DistinctMinerCnt + α2UserSumInputs
+ α3UserTxCount + α4UserWaitTime + ε

Table 5. Likelihood to Stay with the Same Miner The dependent variable is PrivateUserDummy,
which is a dummy variable set to one if a transaction is sent from a user who has submitted at least
one private transaction and zero otherwise. The independent variable is Number of distinct Miners,
representing the number of unique miners who confirmed transactions for each user. In Column (2) We
control the regressions with User Transaction Count which is the total number of transactions submitted
by each user. We also control for User Sum Inputs and User Wait time variables which measure the
average values of sum inputs and wait time per transaction submitted by each user. Our sample consists
of 59,086,692 users including 3,408,352 private and 55,678,340 normal users. Standard errors are
clustered at the user level in all columns.

(1) (2)
Private User Dummy Private User Dummy

Number of distinct Miners -0.00352∗∗∗ -0.00443∗∗∗

(-7.50) (-10.04)

User Sum Inputs 8.79e-14∗∗∗

(7.35)

User Transaction Count 0.000000609∗∗∗

(3.34)

User Wait Time 0.32e-07
(1.32)

Constant -1.541∗∗∗ -1.412∗∗∗

(-710.74) (-278.25)
Observations 59,086,692 59,086,692
R2 0.453 0.611
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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4.4 Regularity of Transactions

We expect private users to post more transactions, and more evenly spaced transactions than

normal users. Users such as exchanges or layer 2 protocols have a high transaction demand

which is also evenly spread out over time. To study the regularity of transactions, we define

Time Dispersion as the standard deviation of the time interval measured in blocks between two

consecutive transactions for each user, and regress time dispersion on a dummy for private users

and control variables as shown in Equation 8.

(8)TimeDispersion = α0 + α1PrivateUserDummy + α2SumInputs
+ α3BlockSize + α4TxWeight + α5TxCount + ε

We observe that private transactions have significantly lower variation in time intervals be-

tween transactions as reported in Table 6. Private transactions are more regular and evenly

spaced over time. Strehle and Ante (2020) mentioned crypto exchanges as entities that regu-

larly generate transactions. We manually match some private user addresses to known entities.

Anecdotal evidence links several private wallet addresses to crypto exchanges.14

4.5 Miner Size

Our toy model suggests that market share determines the miners’ reservation price for private

transactions. Miners with a greater market share have less desire for the confirmation of private

transactions due to fewer incentives for risk-sharing. To test our hypothesis we use a probit

model to regress the private dummy on the miner market share and its square as specified in

Equation (9). The coefficient of the market share variable is negative and significant as reported

14We attribute private wallet addresses using the ’https://www.walletexplorer.com’ service. For example, the
private wallet address ’1445TYMH7NYjXyiusGeDrnuoyEvTSC7C2c’ is related to BitZLato.com, which is an
exchange. This wallet was active from January 22, 2021, to December 12, 2021, and submitted 127,578 private
transactions.
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Table 6. Regularity of Transactions The dependent variable is the Std of Block Height Difference,
which is a proxy indicating the regularity of transactions. The independent variable is Private User
Dummy, a dummy variable set to one if a transaction is sent from a user who utilizes private transactions
and zero otherwise. The regression in Column (2) is controlled with variables Sum Inputs, Block Size,
Transaction Weight, and Transaction Count. Standard errors are clustered at the user level in all columns.

(1) (2)
Time Dispersion Time Dispersion

Private User Dummy -1,682.2∗∗∗ -1,276.9∗∗∗

(-259.22) (-191.97)

Sum Inputs -6.20e-11∗∗∗

(-11.65)

Block Size 0.0000808∗∗∗

(20.52)

Transaction Weight -0.000518∗∗∗

(-8.37)

Transaction Count -0.000333∗∗∗

(-3.42)

Constant 1,779.0∗∗∗ 1,296.6∗∗∗

(696.49) (199.61)
Observations 36,421,771 28,828,629
R2 0.486 0.619
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

in Table 7. This finding aligns with our model, indicating that larger miners are significantly

less likely to include private transactions in a block. The relationship is convex, indicating that

small miners are the most involved in private mining.

(9)PrivateDummy = α0 + α1MarketShare + α2(MarketShare)ˆ2 + α3SumInputs
+ α4BlockSize + α5TxWeight + α6WaitTime + ε
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Table 7. Miner Size The dependent variable is PrivateD, which is a dummy variable set to one if a
transaction is sent from a user who utilizes private transactions and zero otherwise. The independent
variables are Market Share and Market Share Square. Market Share variable represents the percentage
of mined blocks for each miner out of the total mined blocks. The Market Share Square is the square
of market share. The regression in Column (2) is controlled with variables Sum Inputs, Block Size,
Transaction Weight. In Column (3) we add Wait Time as a control variable and unknown miners are
removed from the observations. The regression is run at the transaction level. Standard errors are
clustered at the miner level in all columns.

(1) (2) (3)
Private Dummy Private Dummy Private Dummy

Market Share -0.0983∗∗∗ -0.0998∗∗∗ -.01020∗∗∗

(-31.25) (-31.93) (-4.78)

Market Share Square 0.0077∗∗∗ 0.0078∗∗∗ 0.0011∗∗∗

(48.24) (49.43) (2.99)

Sum Inputs -2.06e-14∗∗∗ -3.41e-14∗∗∗

(-2.91) (-4.32)

Block Size -2.50e-07∗∗∗ -4.92e-07∗∗∗

(-13.08) (-35.21)

Transaction Weight 4.52e-07∗∗∗ 4.85e-08∗∗∗

(9.48) (8.84)

Wait Time 1.36e-07
(0.39)

Constant -1.768∗∗∗ -1.439∗∗∗ -1.312∗∗∗

(-117.22) (-51.03 ) (-50.09)
Observations 97,637,471 97,637,471 81,303,198
R2 0.134 0.137 0.105
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.6 Data Insertion

Data insertion is a method to insert arbitrary data into the blockchain network. Sward, Vecna,

and Stonedahl (2018) describe and compare various techniques for finding data insertion in the

Bitcoin blockchain.15 Data insertion is often utilized by meta layers or side-chains that process

15We find data insertion transactions by examining the content of the output scripts. If the output script field con-
tains “OP RETURN” string, that transaction is classified as a data insertion transaction. “OP RETURN” is a script
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transactions outside the Bitcoin blockchain but periodically post their chain state on Bitcoin

for security. Such users have a steady demand to post transactions on the Bitcoin blockchain

and are likely to contract privately with a miner. We study this fact through probit regression

analyses based on Equation 11. In Table 8, we report that data insertion transactions are more

likely to be sent through a private channel.

(10)PrivateDummy = α0 + α1DataInsertionDummy + α2SumInputs
+ α3BlockSize + α4TransactionWeight + α5WaitTime + ε

Table 8. Data Insertion Likelihood The dependent variable is Private Dummy and is a dummy
variable set to one if a transaction is private and zero if it is normal. The Data Insertion Dummy is an
independent variable set to one if the transaction type is data insertion. The regression in Column (2) is
controlled with Transaction Weight, Sum Inputs and Block Size. We add the Wait time control variable
to the regression and remove unknown miners from the sample in Column (3). The regression is run at
the transaction level. Standard errors are clustered at the block level in all columns.

(1) (2) (3)
Private Dummy Private Dummy Private Dummy

Data Insertion Dummy 0.0227∗∗∗ 0.0269∗∗∗ 0.0536∗∗∗

(22.40) (3.13) (4.97)

Sum Inputs 4.45e-14∗∗∗ 3.55e-14∗∗∗

(8.55) (4.50)

Block Size -9.46e-08∗∗∗ -4.90e-07∗∗∗

(-3.80) (-34.92)

Transaction Weight -1.55e-07∗∗∗ -5.53e-08
(-2.78) (-0.96)

Wait Time 1.08e-07
(0.31)

Constant -1.573∗∗∗ -1.447∗∗∗ -1.301∗∗∗

(-203.76) (-47.76) (-72.24)
Observations 97,637,471 97,637,471 81,303,198
R2 0.513 0.523 0.501
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

opcode used to mark a transaction output. Any Bitcoin associated with an output that contains an “OP RETURN”
is unspendable.
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5 Robustness Tests

We conduct four tests to evaluate the robustness of our findings. The first test addresses the

question of whether private transactions pay lower fees due to extended confirmation times.

The second test assesses the lower variation in fees per block when private transactions are

included in the block. We also test if the miner variation in fee revenue is lower if a miner

has a smaller market share and confirms private transactions. The third test concentrates on

evaluating the miner opportunity set at the time of confirming private transactions. The fourth

test investigates the switching behaviour of private users among miners.

5.1 Matching Waiting Time

We examine whether private transactions pay lower fees, possibly due to longer waiting times

for confirmation compared to regular transactions. In most of our baseline regressions, we

control for wait time. In this section, we generate two different control samples. First, we pair

each private transaction with all normal transactions with an equivalent waiting time within a

six-block window around the private transaction. In the second matched sample, each private

transaction is paired with a corresponding attributed synthetic normal transaction, which has

the average fee per weight of all normal transactions in a six-block window around the private

transaction.

(11)FeeperWeight = α0 + α1PrivateDummy + ε

We run the matching group fixed-effect regression based on Equation 11. We observe that

private transactions pay significantly lower fees per weight compared to normal transactions

with equivalent waiting times in both implementations, as reported in Table 9. Consequently,

the lower fees paid by private transactions cannot be attributed solely to longer waiting times.
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Table 9. Matching Waiting Time Regression The dependent variable is Feeperweight, while the
independent variable PrivateDummy equals one for private transactions and zero for normal transactions.
Normal transactions falling within the 50% range of the private waiting time proxy are grouped. In
Column (1), we present the first implementation, where observations are drawn from 6,000 normal
transactions (spanning almost three blocks) within the range of one private transaction. In Column (2),
the second implementation is reported, relying on synthetic normal transactions. The total number of
private transactions in our sample is 1,741,778 after excluding unknown miners and groups with no
normal matching transactions. The number of categories equals the number of private transactions in
both regressions. We conduct matching level fixed-effect for both regressions.

(1) (2)
Fee per Weight Synthetic Fee per Weight

Private Dummy -9.513∗∗∗ -9.527∗∗∗

(-808.17) (-917.33)

Constant 16.62∗∗∗ 19.40∗∗∗

(2302.22) (2642.44)
Observations 448,855,523 3,483,556
R2 0.470 0.798
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.2 Miner Revenue Variation

Risk sharing is the motivation for our private transactions in our toy model. The miner has an

interest in reducing the variability of her cash flows. We conduct two robustness checks. First,

we examine the standard deviation of miner revenue per block in Table 10 as a function of the

private transactions in that block, as laid out in Equations 12 and 13. As documented in Table

10 we find that blocks with more private transactions have lower in-block fee variation than

normal blocks.

(12)InBlockFeeVariation = α0 + α1PrivateBlockDummy + α2MarketShare + ε

(13)InBlockFeeVariation = α0 + α1PrivatePercentageperBlock + α2MarketShare + ε

Second, we analyze the impact of miner market share and involvement in private transaction

confirmation on the variation of miners’ monthly income based on Equation 14. As shown in

Table 11 we find that miners with smaller market shares experience more volatile monthly
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Table 10. Miner Revenue in Block Variation The standard deviation of miner revenue per block is
the dependent variable and is represented by Std Total Fee Block. The independent variable in Column
(1) is the Private Block Dummy. This variable is a dummy set to one when more than one percent of
transactions in a block are confirmed privately. In Column (2), the independent variable is Private tx
Percentage per Block, representing the percentage of private transactions in each block. We control for
the miner’s Market Share in both regressions. The Market Share variable represents the percentage of
mined blocks for each miner out of the total mined blocks.

(1) (2)
In Block Fee Variation In Block Fee Variation

Private Block Dummy -978,558.6∗∗

(-6.38)

Market Share -1,097,204.1∗∗ -1,037,608.3∗∗∗

(-89.53) (-82.58)

Private tx Percentage per Block -75,010.1∗∗∗

(-20.48)

Constant 4.5∗∗∗ 4.9∗∗∗

(197.56) (246.28)
Observations 68,737 68,737
R2 0.105 0.110
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

revenue, while miners confirming private transactions exhibit more stable cash flows, aligning

with our previous findings. The interaction term ’Small and Private Miner’ reveals that miners

with both a small market share and involvement in private transactions have a lower standard

deviation in total revenue. These findings underscore the incentives for smaller miners to engage

in private agreements with users.

(14)MonthlyRevenueVariation = α0 + α1SmallDummy + α2PrivateDummy
+ α3SmallandPrivateDummy + ε
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Table 11. Miner’s Monthly Revenue Variation The Monthly Std Miner Revenue variable is the
standard deviation of miner revenue per month as the dependent variable. The Small Miner is a dummy
variable set to one when a specific miner has less than ten percent of the market share. Private Miner is
a dummy variable set to one if it is involved in private mining at least once. Small and Private Miner is
an interaction term of the dummy variables set to one if a miner is both small and involved in private
mining. The regression is controlled for month fixed effects.

(1)
Monthly STD Miner Revenue

Small Miner 0.206∗∗∗

(3.41)

Private Miner -0.212∗∗∗

(-3.53)

Small and Private Miner -0.151∗

(-1.92)

Constant 0.109∗∗

(2.34)
Observations 466
R2 0.150
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.3 Miner Opportunity Set

One potential reason why private transactions pay lower fees is that miners use them as filler

transactions, i.e., they include them when there are no better transactions in the Mempool. To

investigate this alternative explanation we evaluate the miner’s opportunity set at the time of

including private transactions in a block.

Figure 2 illustrates the state of the Mempool just before block number 664521 with 799

confirmed transactions mined. The graph shows the number of transactions for quantiles of the

fee per weight distribution. In this block, the miner includes 127 private transactions (red) and

672 normal transactions (blue). As expected the normal transactions are at the upper end of the

fee/weight distribution consistent with the fact that miners want to maximize fee revenue. The
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private transactions, however, are below the 10th percentile due to a lower fee per weight. The

miner had a rich opportunity set with many transactions (green) that paid a higher fee per weight

but were not included. This observation is consistent with miners having long-term agreements

with private users. Without such agreements, confirming private transactions would contradict

their short-term incentives, given the evident missed opportunities to maximize fee revenue.

Figure 2. Miner’s Opportunity Set This chart displays the fee per weight status for Mempool and
confirmed, normal and, private transactions, at block number 664521. The x-axis represents the quantiles
of fees per weight, while the y-axis represents the number of transactions. Waiting transactions in the
Mempool that were eventually not mined are labelled Mempoo (green)l. Normal (blue) shows the normal
transactions that are confirmed in this block. Private transactions (which are also included in teh block)
are labelled as Private (red).

(15)PercentileDifference = α0 + α1BlockSize + α2MempoolSize + ε

For each block, we compute the average percentile of the fee per weight distribution for wait-

ing Mempool and private transactions. The difference between waiting and private percentiles

measures the miner’s missed opportunity and is called the Percentile Difference. We regress the

percentile difference on Blocksize and Mempoolsize to control for congestion based on Equa-

tion 15. The regression results are reported in Table 12. The constant is positive and significant,
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highlighting that waiting Mempool transactions in the miner’s opportunity set are located in

higher percentiles compared to private transactions. Miners confirming private transactions

with a lower fee per weight are losing out in the short term.

Table 12. Miners’ Opportunity Set For each block, we calculate the average percentile of waiting
transactions in Mempool and private transactions in the fee per weight distribution. The left-hand side
variable Percentile Diff represents the difference between the average fee per weight percentiles of nor-
mal and private transactions. The observations represent the number of blocks during the 2021 sample
period. The regression is controlled for Block Size and Mempool Size. In Column (2), the regression
includes miner-fixed effects.

(1) (2)
Percentile Diff Percentile Diff

Block Size 0.000104∗∗∗ 0.000088∗∗∗

(43.55) (39.04)

Mempool Size 0.000254∗∗∗ 0.000169∗∗∗

(7.91) (5.57)

Constant 28.99∗∗∗ 51.75∗∗∗

(8.82) (16.55)
Observations 52,686 52,686
R2 0.039 0.140
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

5.4 Private User and Miner Switching

To better understand the long-term relationships between private users and miners we investi-

gate cases in which private users switch between miners. Switching miners is very rare among

private users. We observe that only 0.79% of private users switch from one miner to another.

Private users who switch at least once stay with the same miner on average for 15,534 blocks,

or roughly 108 days.

Table 13 represents examples of three private users switching from one miner to another in

non-overlapping periods and toward the lower fee per weight payment. Private users generally

switch to miners with a smaller market share.
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Block Height Miner Market Share(%) Avg FeeperWeight Transaction Count
User Id = 10013
664137 poolin 10.16 13.10 87
676436 BTC.com 7.54 6.02 72
693154 foundry usa 4.61 1.21 35
User Id = 675627
709168 AntPool 12.37 0.33 79
709230 foundry usa 4.61 0.01 72
User Id = 1001015
665461 F2Pool 12.73 32.21 70
666506 binance 8.83 31.45 48
668060 lubian.com 0.54 21.10 18

Table 13. Private User-Miner Switch Example The Profitable Switches for three private users are
reported in this table. For each contract, the miner’s Market Share and the private user’s Transaction
Count and Avg Fee per Weight are reported.

We hypothesize that private users gain profit by switching from bigger miners to smaller

ones. A switch is profitable if a private user pays a lower fee per weight on average after the

switch. This fee difference is user profit due to the switch, called UserProfit. The miners’

market share difference is called DiffMarketShare. We implement regression analysis based on

Equation 16 and findings are reported in Table 14. The coefficient of interest is negative and

significant. Switching to a user with a higher market share of one unit results in a -0.04 unit

decrease in the user profit. This finding is aligned with our hypothesis that switching to larger

miners is not profitable for private users.

(16)UserProfit = α0 + α1DiffMarketShare + α2User TX Count + α3User Wait Time + ε

6 Conclusion

We offer novel insights into the fee settlement market within blockchain systems, particularly

focusing on Bitcoin. Based on a sample of over a hundred million transactions, we find that

private transactions consistently pay lower average fees and display lower fee variation com-

pared to regular transactions. Furthermore, our investigation reveals distinct patterns of activity
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Table 14. Profitable Switch and Miner Market Share The dependent variable is UserProfit which is
the difference between the average fee per weight before and after the switch. DiffMarketShare is the
difference between the market share of the miners before and after switching, User TX Count is the user
transaction count, and User Wait time which is the proxy for private users’ waiting time. The number
of observations is the number of switches by private users in our one-year sample. Standard errors are
clustered at the user level.

(1) (2)
User profit User profit

Diff Market Share -0.04283∗∗∗ -0.04281∗∗∗

(-5.00) (-5.13)

User TX count 0.000023∗∗∗

(2.24)

User Wait Time -0.0000974∗∗∗

(-2.58)

Constant -0.358∗∗∗ -0.367∗∗∗

(-13.89) (-13.87)
Observations 142,628 142,628
R2 0.003 0.004
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

among users of private transactions, highlighting their propensity for regular and evenly-spaced

interactions with the blockchain. Despite their heightened activity, private users rely on fewer

distinct miners for transaction processing compared to their regular counterparts.

Moreover, our research sheds light on the broader perspective of market dynamics within

blockchain systems, challenging the idealized notion of Bitcoin as a purely decentralized and

egalitarian financial network. The observed price discrimination and the emergence of different

tiers of service underscore the complexities inherent in the Bitcoin settlement market, where

certain users benefit from privileged access to lower fees and reduced uncertainty. These find-

ings not only contribute to a deeper understanding of blockchain economics but also emphasize

the need for further exploration into the evolving nature of financial markets in the era of de-

centralized technologies. Ultimately, our study highlights the intricacies of market behavior

within blockchain systems and underscores the imperative for continued analysis to navigate
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the complexities of emerging financial ecosystems effectively.
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A Variable Description

# Items Description
1 Block Size The original Block size limit in the Bitcoin blockchain is one megabyte. Post the segwit update part of the

transaction can be outsourced into the witness section and weight units were introduced. Content in the witness
section has a lower weight than content in the main block, effectively quadrupling block capacity. A block has a
capacity of 4 million weight units, which is also sometimes expressed as 1 million vBytes (virtual bytes).

2 Data Insertion This method utilizes the underlying blockchain mechanisms to store data in the chain by overwriting the output
script. We identify data insertions by the use of the “OP RETURN” op-code in the Bitcoin script. Other data
insertion methods such as posting inserted data use script hash codes.

3 Fee per Weight For miners, the opportunity cost of including a transaction in a new block is determined by its physical size in
weight units, as block size is limited. The fee per weight measure is calculated by dividing the transaction fee by
its weight.

4 Input Wallet Address Input wallet address indicates a specific address from which bitcoins are being sent in a transaction. Each input
typically corresponds to an unspent transaction output (UTXO) from a previous transaction. A user can post a
transaction with multiple input addresses. In this case, the user should have access to the private key associated
with each input wallet address to validate and sign them as a rightful owner of the Bitcoin.

5 Mempool Size Normal transactions are waiting in the Mempool before including in a block by a miner. The size of the Mempool
is the aggregate size in bytes of transactions waiting to be confirmed in Mempool per block.

6 Miner Market Share Miners compete to win each block creation. Each block in the blockchain is mined by a specific miner. Miners
usually signed their mined block. We count the number of blocks mined by each miner during our sample period.
The proportion of blocks mined by each miner to the total number of blocks mined in the same period is the
miner’s market share.

7 Miner Opportunity Set All transactions waiting in Mempool at the time of selecting a candidate block by the winner miner is the miner
opportunity set. The miner has full discretion in selecting transactions from the Mempool and including them in
a block.

8 Miner Revenue Miner revenue consists of two deterministic and non-deterministic components including reward and fee. A
miner who can add a block to the blockchain receives 6.25 bitcoin as a reward in our sample period. The block
reward is set by the Bitcoin protocol and is roughly cut in half every four years (210,000 blocks). The miner
also collects transaction fees for the transactions she confirms and includes in the newly mined block. The fee
is offered by users when they post transactions on the Bitcoin blockchain. Miners collect rewards and fees to
compensate for the costs of mining a new block and transaction confirmation respectively. The uncertainty of the
non-deterministic part of the revenue which is the fee motivates miners to participate in risk-sharing long-term
agreements with private users.

9 Private Transaction A transaction which bypasses the Bitcoin protocol and is sent to the miner directly is private. Private transactions
never wait in the Mempool.

10 Profitable Switch A private user posts its transactions to a designated miner based on a long-term contract. Private users sometimes
switch from one miner to another to pay a lower average fee, this switch is profitable for that user.

11 Transaction Fee The Bitcoin protocol does not set the transaction fee in the blockchain. Users offer a fee to incentivize miners to
settle their transactions. The general belief is that transactions with higher fees are more likely to get confirmed
by miners.

12 Transaction Weight Post segwit update, the size of the transaction is measured with weight units. Transaction weight consists of two
main parts including the base and witness data. The base weight represents the size of the transaction excluding
the witness data. It includes metadata, inputs, outputs and other non-witness data such as fees. Each block in the
blockchain has a limited capacity of 4 million weight units. Therefore, a limited number of transactions fills the
block.

13 Time Dispersion The standard deviation of the time interval measured in blocks between two consecutive transactions for each user
is the time dispersion. This measure shows how evenly transactions associated with a user are spaced through
time. Regular transactions are the ones submitted by the same user which have lower time dispersion.

14 User Group With the union-find algorithm, we classify input addresses into user groups. Each user group consists of several
input wallet addresses. The same input wallet addresses used in various transactions are associated with one user
group. Because the same user should have access to the private key of the input addresses.

15 Waiting Time The difference between the block number in which the transaction was included in the blockchain and the highest
block number when the transaction entered Mempool is waiting time. The waiting time for a private transaction is
not observable as it never enters Mempool. We use a proxy for measuring private transaction waiting time which
is half the distance between blocks that are mined by their designated miner.

Table 15. Description of Variables The variable descriptions are sorted alphabetically.
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B User Classification

Based on the address alone, it is impossible to group observed addresses by wallets. Users can

have various wallets and modern wallets create new addresses frequently. Therefore, By design,

tracing individual users’ activities through the Bitcoin blockchain is complex.

Our sample consists of 97,637,471 confirmed Bitcoin transactions for 2021. Each transac-

tion can have multiple input wallet addresses. We observe 300,147,341 transaction hash-input

address pairs. The number of unique input wallet addresses is 161,482,396. Table 16 reports

the statistics in our sample. We cluster observations to 59,086,692 user groups.

Items Values
Transaction hash - input address pairs 300,147,341
Distinct Input Wallet Addresses 161,482,396

Table 16. Input Wallet Addresses Statistics The summary statistics for input wallet addresses in
2021 are reported. The observations are transaction hash-input address pairs. The miners’ and mixers’
transactions are removed from the observations (see Appendix C).

We ascribe the hash-input addresses to users based on the Union-Find algorithm. This

algorithm is widely used to classify transaction-level data into user-level data and was first

introduced by Cormen, Leiserson, Rivest, and Stein (2001) and then widely applied in academic

works such as Ron and Shamir (2013), Meiklejohn, Pomarole, Jordan, Levchenko, McCoy,

Voelker, and Savage (2013), Khalilov and Levi (2018), Greaves and Au (2015) and Foley,

Karlsen, and Putniņš (2019).

The algorithm first attributes all input addresses in a transaction to a user group. Then user

groups with overlapping input addresses are merged in an iterative process. We create disjoint

sets of input addresses such that each address in a set was (i) used with at least one other address

of the same set in one transaction and was (ii) never used together with an input address from

another set in one transaction.
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To improve the accuracy of our study, we exclude mixers’ and miners’ transactions (see

Appendix C) from the sample before classification. We detect 107,639 mixers’ and 152,556

miners’ transactions. We identify and exclude miners’ wallet addresses through coinbase trans-

actions.16 Coinbase transactions transfer miner revenue including the total fee of confirmed

transactions and block reward bitcoins to the miner’s wallet address.

Our approach to detecting Bitcoin users aligns with the previous literature. Xi, Ketai,

Shenwen, Jinglin, and Hongliang (2021) used a similar algorithm which they referred to as

common-input heuristic. Our user classification works well, given the short sample period.

Using a sample of 606 million transactions, Foley, Karlsen, and Putniņš (2019) identify 106

million users. Extracting Bitcoin miners’ addresses based on the coinbase transactions has been

utilized widely before such as (Gjermundrød, Chalkias, and Dionysiou 2016), (Bjercke and

Finlow-Bates 2020) and (Vlahavas, Karasavvas, and Vakali 2024). 17

B.1 Example 1:

This example describes the union-find algorithm that creates two user group disjoint sets in a

simple step. Consider we have five transaction-address pairs as follows. First, we consider each

pair as a unique user group set.

Pairs:

- User Group 1: (T1-add1)

- User Group 2: (T1-add2)

- User Group 3: (T2-add3)
16The first confirmed transaction in each block, called coinbase.
17Our user group classification algorithm may not result in perfect clustering if a user never utilizes mutual input

addresses. In this case, the algorithm detects disjoint sets leading to different user groups; while they belong to the
same user. Our estimate can therefore be seen as an upper bound on the number of users.
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- User Group 4: (T2-add2)

- User Group 5: (T3-add4)

The Algorithm detects that add2 is mutual between two sets and then unites the sets. Since

input address two (add2) is mutual between user groups 2 and 4, the sets will unite and create

a bigger set containing transaction one (T1) and transaction two (T2) including their related

inputs. Therefore, we detect two disjoint user groups in one step.

Step1:

-User Group 1234: (T1-add2 ,T2-add2, T1-add1, T2-add3)

-User Group 5: (T3-add4)

B.2 Example 2:

This example highlights the recursive nature of the user classification algorithm. In this case, the

algorithm detects two disjoint sets in two steps. Consider we have six observations as follows:

Pairs:

- User Group 1: (T1-add1, T1-add5)

- User Group 2: (T2-add2, T2-add3)

- User Group 3: (T3-add3, T3-add1)

- User Group 4: (T4-add2)

- User Group 5: (T5-add4)

- User Group 6: (T6-add1)

Step1: Creating a set to find the relationship between transactions and addresses based on
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the mutual address add1 between groups 1, 3 and 6 and mutual address add2 between groups 2

and 4.

- User Group 136: (T1-add1, T1-add5, T3-add3, T3-add1, T6-add1)

- User Group 24: (T2-add2, T2-add3, T4-add2)

- User Group 5: (T5-add4)

Step2: In this step, the address add3 is mutual between user groups 136 and 24. The

algorithm detects two disjoint user groups.

- User Group 12346: (T1-add1, T1-add5, T3-add3, T3-add1, T6-add1, T2-add2, T2-add3,

T4-add2)

- User Group 5: (T5-add4)
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C Mixed Transaction Detection

Bitcoin mixers provide improved anonymity for Bitcoin users by breaking the connection be-

tween wallet addresses and the identity of their true owners. These services leverage inherent

characteristics of both Bitcoin and blockchain technology (Pakki, Shoshitaishvili, Wang, Bao,

and Doupé 2021). Mixing the transactions of various users in several steps makes it difficult to

trace the original source or destination of the funds. Bitcoin mixers provide a layer of privacy

by breaking the link between the sender and recipient of the funds. They are often used by

individuals who want to enhance the privacy of their transactions, as well as by those who wish

to anonymize their Bitcoin holdings for various reasons, including security and confidentiality

concerns.

There are two main types of mixers centralized and decentralized in Bitcoin blockchain.

The Centralized mixers are operated by private service providers such as Yo!Mix and Mixtura.

Users send the Bitcoin to the wallet addresses owned by the mixer and pay the service fee.

The user should specify the destination address as well. Mixers then combine the received

funds from several users and redistribute them in the blockchain. The Decentralized mixers

utilize protocols like CoinJoin to create an automatic mixing algorithm to service several users

at the same time and redistribute them to the recipient addresses. CoinJoin operates through

open-source protocols allowing users to mix their funds in a peer-to-peer manner.

In general, mixing services have three phases: taking inputs, mixing, and sending outputs.

These phases are designed to enhance transactional privacy and make it more challenging to

track specific addresses involved in Bitcoin transactions. In Input phase, users send their cryp-

tocurrency to the mixing services. In the Mixing phase, the mixer service combines various

incoming funds from different users to obfuscate the origin of the funds. This phase can take

several steps to improve anonymity by making it harder to trace transactions. The last step is
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Output phase in which mixed funds are redistributed to the specified destination addresses.

Although Bitcoin mixers offer users anonymity, they are not without risks. The centralized

mixers bear a risk of loss of funds if the private service provider shuts down or gets hacked.

The decentralized mixers also rely on multiple participants for their mixing processes and aim

to remain anonymous. There is also a risk of falling victim to scams and fraud when using

Bitcoin mixers, as well as potential vulnerabilities since the implemented mixing service is not

disclosed. Mixers are less secure than regular transactions because in order to combine inputs

from multiple users the users must hand over their signature to the off-chain mixer because

Bitcoin has no smart contract ability or send the funds to the mixers’ wallet addresses. In theory,

the mixer could divert the money to their own wallet. Mixers therefore rely on reputation.

Detecting mixed transactions improves the user classification algorithm. Although Bitcoin

mixing services are evolving, they are not documented to stay untraceable. The mixing services

differ with respect to fees, security, and execution time. (Balthasar and Hernandez-Castro 2017)

study and rank various mixing services based on their design, tractability and their attack weak-

ness. Typical fees are either proportional to the amount (2% to 3%), or fixed prices, such as

0.01 BTC. There are three general approaches for detecting Bitcoin mixers in literature.

The first strand tries to identify the relations between Bitcoin address and users by clustering

(classification) such as (Khalilov and Levi 2018) and (Andola, Yadav, Venkatesan, Verma, et al.

2021) and (Yanovich, Mischenko, and Ostrovskiy 2016). Then the analyzer can detect an

out-of-norm (irregular) transaction behaviour by a specific user. Leskovec, Lang, and Mahoney

(2010) and Xi, Ketai, Shenwen, Jinglin, and Hongliang (2021) evaluate the modularity of mixed

transactions and quantify the quality of the detected transactions as mixers by adding a new

transaction to the group.

The second strand studies the representative mixing services. This approach is practical

based on the returned information from mixers’ services and analyzing that based on user types
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and address prefixes. Most public mixers are black-box services, which do not have their code

available to the public. To tackle this challenge, Pakki, Shoshitaishvili, Wang, Bao, and Doupé

(2021) and Wu, Hu, Zhou, Wang, Luo, Wang, Zhang, and Ren (2021) interact with Five and

Four real public mixers, respectively, to identify actual behaviours and indicative of their imple-

mentation and their resistance. In this approach, the representative mixing services are detected

based on Bitcoin Talk and public media.18 In the Bitcoin Talk forum, mixers advertise their

services, and there are multiple venues where people talk about mixing services from technical

and application points of view. This forum allows users to distinguish trusted mixers as men-

tioned in (Pakki, Shoshitaishvili, Wang, Bao, and Doupé 2021). Based on interaction with the

real mixing services, a sample of input-output transactions will be created based on the return

address to analyze. Interacting with mixers has two general types based on cost and technology.

The third strand is based on classifying the mixers’ transactions according to transactional

specifications such as time, value and input-output addresses. Pakki, Shoshitaishvili, Wang,

Bao, and Doupé (2021) finds that delays are maximized in mixed transactions compared to

normal ones. Technically input mixing services happen automatically almost one minute out of

the chain. Then mixers are a random delay from a few hours to one day to post the batch of

mixed transactions to the Bitcoin blockchain. Balthasar and Hernandez-Castro (2017) shows

that mixer services may have service limitations that one can utilize to detect and exclude them

from the sample. For example, many mixers have an upper limit (1,000 BTC) and a lower

limit (0.01 BTC) for the transfer amount. Mixed transactions usually have multiple inputs and

multiple outputs. Athey, Parashkevov, Sarukkai, and Xia (2016) shows that transactions with

more than 4 inputs and 4 outputs are likely to be created by mixers. Whirlpool mixing services

have five inputs and five outputs. In addition, they have equal split amounts (0.001, 0.01, 0.05

and 0.5). Wasabi and Joinmarket are two implementations of the Coinjoin protocol which both

18https://bitcointalk.org/

45



have a specific number of inputs and outputs.19

We implement a detecting algorithm based on mixers’ transaction specification which is

compatible with the third strand. CoinJoin implementations are widely used because of their

resistance against join-then-abort attacks, ensuring users cannot disrupt the mix after sending

funds to the input address. Our approach is to detect and filter out two transaction types that are

typical of the Coinjoin protocol which is a peer-to-peer mixer type. The first type of transaction

has at least five equal outputs and five equal inputs. The second type of transaction has more

than ten equal outputs and the number of inputs is greater than the number of outputs.20 In our

2021 Bitcoin sample, our program detects 112,820 mixed transactions, comprising 110,956 for

type 1 and 1,864 for type 2. Mixing these two sets, we have 107,639 unique mixed transactions

as reported in Table 17. We excluded the transactions of mixers and miners from our sample,

leading to 97,637,471 records of data.

Mixers’ Transaction Type Count
Type 1 110,956
Type 2 1,864
Total 112,820
Unique 107,639

Table 17. Mixers’ Transactions This table reports the summary statistics for mixers transactions in our
2021 sample.

19https://wasabiwallet.io/api/v4/btc/ChaumianCoinJoin/unconfirmed-coinjoins
https://github.com/JoinMarket-Org/joinmarket-clientserver/blob/master/scripts/snicker/snicker-finder.py

20The Coinjoin protocol implementations are available in GitHub https://github.com/nopara73/Dumplings/blob/master/Dumplings/Scanning/Scanner.cs
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