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1 Introduction

It is a fundamental tenet of asset pricing that investors should be compensated for their exposure to

sources of systematic risk. This principle is intimately related to the quest for return predictability

and market efficiency. If the return premium associated with a given asset arises because it is funda-

mentally riskier, then we might expect these return premiums to persist in the future. If, however,

the returns premiums do not reflect a compensation for risk, then we might expect the excess returns

to be vanish over time as investors become more aware. This practical view applies to any risky asset

and is often based on the assumption that an accurate identification of common factors in the cross

section of returns can help to provide a risk-based explanation of the performance across assets (see,

e.g., Giglio and Xiu, 2021).

With the rising price and public awareness of Bitcoin, investors have been drawn to cryptocurrency

markets by the promise of significant returns, compared to the paltry yields often on offer from cash,

bonds, and other traditional asset classes. The hyperbolic growth in notional value – with a total

capitalisation of around $1 trillion at the time of writing – has led investors and academics to more

carefully examine the interplay between risks and returns in what is still a relatively unknown market.1

Put it differently, the extent to which cryptocurrency returns are consistent with the exposure to

sources of risk, or if they represent primarily a behavioural phenomena, is yet to be fully understood.

This is partly due to the still relatively unknown nature of the risks that market participants face when

investing in this space. Following the Fama and French (1993) blueprint for equities, Liu et al. (2022)

and Cong et al. (2021b) propose a series of long-short portfolios based on different asset characteristics

– for instance, market capitalization, network growth, or past performances – to rationalise part of

the variation in cryptocurrency returns.

While this certainly simplifies an empirical analysis, the assumption that risks can be unequivo-

cally mapped by observable factors requires a previous complete understanding of the cross section

of average cryptocurrency returns. However, this is likely a partial understanding at best, and the

ubiquitous presumption that risk factors can actually be observed with negligible measurement error

may not necessarily hold in practice (see, e.g., Giglio and Xiu, 2021). Furthermore, standard pricing

models based on either latent or observable common factors typically assume that loadings are con-

1For comparison, as of September 2022, the total market capitalization of the Italian, Spanish, French and German
equity markets was approximately $0.7, $1, $2.4, and $1.9 trillion, respectively.
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stant over time. As a result, they may be ill-suited for estimating a stochastic discount factor which

may not necessarily be constant over time, particularly when the asset class under investigation is

plagued by extreme volatility and structural instabilities due to widespread market fragmentation

(see, e.g., Makarov and Schoar, 2020, 2021).

In this paper, we build upon Kelly et al. (2019, 2022) and implement an instrumented principal

components analysis (IPCA); a conditional latent factor model in which the factor loadings are driven

by a set of observable individual asset characteristics. These individual characteristics capture key

risk features, including trading frictions, liquidity, volatility, past performances, and growth/adoption

as proxied by on-chain network activity.

Our modeling framework has a few features that differ from frameworks used in the prior literature

on cryptocurrency markets. To begin, long-short portfolios in the cryptocurrency space do not nec-

essarily represent actual investment opportunities, because they hardly incorporate transaction costs

and trading restrictions (see, e.g., Makarov and Schoar, 2020). Discrepancies between the construc-

tion of factor portfolios and their actual implementation could bias inferences about a beta/expected

return model (see, e.g., Huij and Verbeek, 2009). By acknowledging that the common factors are un-

observed, our approach searches for the most apt factors and avoids theoretical inconsistencies from

fixing factors a priori and treating them as though they are perfectly observed.

In addition, IPCA implies that the factor betas are time varying and depend on a potentially large

set of individual asset characteristics. On the one hand, this allows a researcher to discipline the

estimates of the stochastic discount factor in a way that is coherent with theoretical underpinnings;

that is, individual asset characteristics should provide reliable information to understand the dynamics

of expected returns (see Daniel and Titman, 1998). On the other hand, the instrumented betas can

help to consistently recover the unknown factor structure of the returns while at the same time can

accommodate dramatic fluctuations in the pricing kernel (see, e.g., Cochrane, 2011; Kelly et al., 2019).

As a by-product of the estimation framework, the IPCA produces a set of managed portfolios,

one for each characteristic, that can be used to test the pricing performance of different asset pricing

models. This allows one to abstract from an arbitrary choice of a single or a pair of characteristics to

construct univariate or double-sorted portfolios as test assets. This level of abstraction and the explicit

mapping between asset characteristics, loadings, and associated latent factors may be particularly

suitable within the context of cryptocurrency markets, where the nature of the stochastic discount
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factor is yet arguably unknown. Put it differently, the IPCA efficiently aggregates a large set of asset

characteristics that potentially could all be informative, given the relatively unexplored nature of the

cryptocurrency market, and then allow the data to dictate if and how these characteristics can provide

a reliable risk-based explanation of cryptocurrency returns.

Empirically, we investigate the returns dynamics of a large cross section of cryptocurrency pairs

traded daily against the U.S. Dollar from September 1st, 2017 to September 1st, 2022 on more

than 80 centralised exchanges. For each pair, we construct a set of 28 characteristics, which can be

broadly categorized as on-chain activity, trading frictions, and past performances. On-chain activity

contains measures of network growth, value, and adoption (see, e.g., Pagnotta and Buraschi, 2018;

Cong et al., 2021b). We add a residual category dubbed as “other”, that contains the equivalent

of a CAPM alpha and a simple non-parametric downside risk measure. Our analysis shows that,

by leveraging information in observable cryptocurrency characteristics to estimate latent factors and

the corresponding dynamic loadings, researchers can better understand the risk-reward trade-off in

cryptocurrency markets compared to the insights gained from traditional static latent factor models

and long-short observable portfolios.

Our main contribution is fourfold: first, we show that a parsimonious IPCA model with few latent

factors can provide a more accurate risk-based explanation of both the realised returns variation

– i.e., systematic risks – and the difference in average returns – i.e., risk compensation –, when

compared against standard latent or observable risk factors. For instance, a four-factor IPCA model

(henceforth IPCA4) produces an out-of-sample total R2 for individual cryptocurrency daily returns of

11.5%. For comparison, a benchmark factor pricing model with seven observable factors (henceforth

FF7) – market, size, momentum, volatility, liquidity, past maximum daily returns, and network-to-

market value – produces an out-of-sample R2
total of 8%. In addition, the IPCA4 provides a more

accurate description of risk compensation in cryptocurrency markets, as highlighted by a positive

out-of-sample predictive R2 equal to 0.30%, against 0.03% and 0.02% obtained from a static principal

component regression with seven latent factors (henceforth PCA7) or the FF7 model, respectively.

The IPCA’s success in explaining jointly the variation in both realised and expected returns

come solely from the exposure to common risk factors and does not depend on mispricing effects,

i.e., the intercept coefficients are restricted to zero for all assets. Yet, the gap in favour of the

IPCA4 increases when characteristic-sorted portfolios are used as test assets: the out-of-sample R2
total,x
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(R2
pred,x) obtained from the IPCA4 model is 52% (1.9%), whereas the total and predictive out-of-sample

performance of the benchmark (FF7) model is 19% (0.95%). The performance gap in favour of the

IPCA4 with respect to PCA7 also increases for managed portfolios, with the latter producing an R2
total,x

(R2
pred,x) equal to 17.7% (0.5%) out of sample, daily.

The second main result pertains to a set of alternative dimensions through which the pricing

performance of the IPCA is compared to both latent and observable risk factors model. We consider

the time series R2
ts, the cross-sectional R2

cs, and the “relative pricing error” (RPE). The latter is

defined as the magnitude of the model’s unexplained average returns, i.e., the ratio between the

alphas and the historical average returns. When a model does not explain any systematic part of the

returns variation, the RPE is at, or above, 100%. The results show that the ability of the IPCA4

model to explain both the time-series and the cross-sectional variation of the returns is substantially

higher than that of the observable FF7 model. For instance, the out-of-sample time-series R2
ts of the

IPCA4 is 20.4% (46%) for individual assets (managed portfolios); this compares to a 18.8% (5.02%)

obtained from the FF7 model. In addition, while the IPCA4 delivers an out-of-sample RPE of 10.9%,

the competing FF7 (PCA7) model generate a much higher relative pricing error of 63% (74%). This

suggests that, as far as the pricing performance is concerned, the IPCA seems to provide a more

accurate risk-based explanation of both the realised and expected cryptocurrency returns variation.

As highlighted by Kelly et al. (2019), the dual implication of IPCA’s superior performance is

that the IPCA latent factors are more consistent with mean-variance efficiency. We show that the

four-factor IPCA specification achieves an ex-ante Sharpe ratio of 0.83, versus 0.18 (0.40) for the

benchmark FF7 (PCA7) model. Finally, the superior asset pricing performance of the IPCA com-

pared to conventional models is confirmed by looking at the unconditional average absolute alphas

across managed portfolios: the average absolute alphas of the 28 portfolios sorted on different asset

characteristics is 0.17% daily for the IPCA4 compared to a 0.59% from the PCA7 and 0.57% for the

FF7.

Our third main result relates to the dynamics of the IPCA factor loadings and the factors inter-

pretation. We build upon Kelly et al. (2019) and Kelly et al. (2022), and test the significance of

the characteristics used to discipline the betas through a semi-parametric bootstrap procedure. Our

testing results show that, based on the baseline IPCA4 model, the factor loadings, and therefore the

conditional expected returns, are primarily driven by a handful of individual asset characteristics in-
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cluding liquidity, past performances, and volatility. The fact that only a small set of individual asset

characteristics (7 of 28) is significant, coupled with the zero-alpha restriction in the baseline IPCA,

suggests that these characteristics do not represent spurious compensation in the absence of risks.

In addition, our main results show that the latent IPCA factors are not spanned by observable

long-short portfolios. This is directly tested both by leveraging the flexibility of the IPCA estimation

methodology, and by a series of factor spanning regressions. A series of individual regressions of each

latent factor on managed portfolios provides some interesting interpretations of the IPCA model. For

instance, the first factor primarily correlates with the market beta and network growth measures,

the second factor with the maximum daily return in the previous week, the third factor with trading

volume, size and turnover, and the fourth factor is a combination of past performance measures,

liquidity and volatility. This suggests that a combination of trading frictions and network growth

might be the key determinant of risk premiums within the cryptocurrency space (see, e.g., Pagnotta

and Buraschi, 2018; Cong et al., 2021b; Babiak et al., 2022).

The final main result of the paper relates to the alleged segmentation between cryptocurrency and

traditional equity markets (see, e.g., Liu and Tsyvinski, 2021). The conventional wisdom posits that

although cryptocurrency and equity markets are fundamentally segmented, the correlation between

the two steadily increased since the outbreak of the Covid 19 pandemic. In this respect, our assess-

ment asks: how relevant is the pricing information contained in standard equity portfolios for the

cross section of cryptocurrency returns and vice-versa? The IPCA framework is particularly suitable

because it allows us to directly test for the incremental explanatory power of equity risk factors while

at the same time being agnostic on the nature of the common cryptocurrency factors. This allows us

to understand the issue of fundamental correlations between cryptocurrency and equity risk factors

in a self-contained framework.

The results suggest that once we control for IPCA latent factors, the information content of equity

risk factors to explain the variation in realised and expected cryptocurrency returns is negligible.

When we augment the IPCA fit on the cross section of individual cryptocurrency returns with the

Fama and French (2015) five equity risk factors, the total and predictive R2 remain virtually the same.

In addition, a semi-parametric bootstrap test shows that none of the equity risk factors considered

produce a statistical significant effect on the dynamics of realised or expected cryptocurrency returns,

once we condition for the IPCA factors. Nevertheless, a series of factor spanning regressions shows
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that, albeit small, there is some correlation between the IPCA cryptocurrency factors and the Fama-

French equity factors. For instance, the correlation between the first IPCA factor and the excess

return on the equity market is highly significant and increased after March 2020.

Overall, the empirical results suggest that market segmentation may still potentially represent

an impediment to cross-asset fundamental spillovers between equity and cryptocurrencies, compared

to other asset classes such as bond (see, e.g., Kelly et al., 2022), foreign exchange and commodities

(Asness et al., 2013). However, the presence of a moderate correlation between markets, as shown

for instance by the first IPCA latent factor and the equity market portfolio, potentially suggests that

investors’ hopes on the “diversification” benefits of cryptocurrencies may have been ill-posed (see,

e.g., Baek and Elbeck, 2015; Yermack, 2015; Biais et al., 2020).

The strong performance of the IPCA compared to traditional latent and observable factor models

holds across different sub-samples, such as by slicing the cross section by quartiles on size, liquidity,

and network growth, including when we divide the sample into pre- and post-COVID 19 outbreak,

and using less granular weekly returns. The latter helps us to better understand the properties of

the IPCA when the ratio between the number of assets and the number of observations increases,

and provides some useful comparisons with the existing literature. In addition to Liu et al. (2022),

who study the variation in weekly cryptocurrency returns in the pre-Covid period, based on a series

of observable risk factors, our work is related to a growing literature that aims at understanding the

trade-off between risks and rewards within the context of cryptocurrency markets, including Cong

et al. (2021b), Makarov and Schoar (2020), Dobrynskaya (2021), Makarov and Schoar (2021) and

Babiak et al. (2022), among others. It is also related to a large literature investigating how individual

characteristics can be used to predict risk premiums (including Freyberger et al., 2020; Büchner and

Kelly, 2022; Kelly et al., 2022, among others), and to a large literature studying the pricing dynamics

and investment properties of digital assets (for example, Weber, 2016; Biais et al., 2020; Chiu and

Koeppl, 2017; Cong and He, 2019; Cong et al., 2021a,c; Sockin and Xiong, 2020; Schilling and Uhlig,

2019; Abadi and Brunnermeier, 2018; Routledge and Zetlin-Jones, 2021).

6



2 Research design

2.1 Data description

We collect OHLC prices and trading volume from CryptoCompare.com and the data on on-chain

activity from IntoTheBlock.com. The data are sampled daily from June 26th, 2014 to September 1st,

2022, with a day defined at a start time of 00:00:00 UTC. Daily prices and volume are aggregated

across more than 80 different centralised exchanges which are deemed to provide a sufficiently reliable

trading platform by CryptoCompare.2 The aggregation across different exchanges is volume-weighted,

that is, prices and trading volume are aggregated based on the exchange-specific trading activity. This

procedure implies that larger and more established exchanges tend to have relatively more weight in

the aggregation of the price and volume of a given pair compared to the weight of smaller/peripheral

exchanges. All cryptocurrency pairs in the sample use USD as the quote currency, that is, USD

represents the “domestic” currency in the sample (see, e.g., Liu et al., 2022). We only retain cryp-

tocurrency pairs if they have all available data from CryptoCompare.com and IntoTheBlock.com after

merging.

We introduce a variety of filters to mitigate the effect of erratic or suspicious trading activity.

First, we exclude pairs that had zero traded volume or a zero price for any day t. Second, for

each pair and day t we compute the ratio of traded volume to market capitalization and exclude

pairs with a ratio greater than 1. This is a simple filter to screen out pairs which are potentially

subject to “fake” volume or “wash trading” in a given day, meaning trading activity which is largely

decoupled from the actual market value of a cryptocurrency on a specific date. The threshold is

conservative because the median of the ratio is 0.01. Third, we screen out (1) all cryptocurrencies

that are backed by or that track the price of gold or any precious metal, (2) so-called “wrapped”

coins, e.g., Wrapped Bitcoin (WBTC), since they represent copies of existing tokens, (3) stablecoins,

including those that are centralized (e.g., USDT, USDC) and algorithmically stabilized (e.g., DAI,

UST) for all fiat currencies, and (4) coins that are synthetic derivatives, e.g., stETH, stSOL, as they

track the value of an existing cryptocurrency. The screening is based on the classification provided

by CoinMarketCap.com. Appendix A provides more details on the additional filters implemented in

2The exchanges that we include in the aggregation are the ones ranked from AA to B by
CryptoCompare.com. The precise ranking of all exchanges appears on the company website at
https://www.cryptocompare.com/exchanges//overview.

7

https://min-api.cryptocompare.com/
https://www.intotheblock.com
https://min-api.cryptocompare.com/
https://www.intotheblock.com
https://coinmarketcap.com/cryptocurrency-category/
https://min-api.cryptocompare.com/
https://www.cryptocompare.com/exchanges/##/overview


the aggregation step by CryptoCompare.com to mitigate the impact of fraudulent trading activity

and/or malfunctioning API for individual exchanges. After applying all filters, we are left with an

unbalanced panel of 395 cryptocurrency pairs.

Figure 1 overviews the data. The left panels compare the aggregated capitalization of cryptocur-

rencies in our sample with the total market capitalization. Two observations are noteworthy. First,

the figure shows that our dataset covers a large fraction of the total market, from as much as 95%

from the beginning of the sample until late 2019 and a still almost 70% at the end of the period under

consideration. Although the cross section in our sample is smaller than the number of cryptocurren-

cies currently available – at the time of writing there are more than 19,000 different tokens according

to CoinMarketCap.com – coverage of the market value is quite substantial.3

Second, there is considerable time variation in the market value of cryptocurrencies in our dataset.

For instance, the sample includes the ICO mania of late 2017, the so-called “crypto-winter” of 2018-

2019, the COVID-19 crash in March 2020 – which resulted in a 40% loss in Bitcoin (BTC) and

even greater losses in the alternative coins –, and the subsequent boom and bust cycle that begun

late 2021 and ended with the spark of the Ukraine war in early 2022. In addition, our sample

includes major regulatory and institutional changes, including the ban by the Chinese government

on crypto exchanges, the introduction of tradable Bitcoin and Ethereum futures contracts on the

Chicago Mercantile Exchange (CME), the launch of the first traded Bitcoin Futures ETFs in October

2021, and the built-up of the transition of Ethereum from proof-of-work to a proof-of-stake protocol.

In sum, our sample covers a variety of regulatory events and market scenarios.4

The right panels in Figure 1 report a snapshot of the time-series and cross-sectional dimensions of

our panel of assets. A pair is included in the sample if it has been traded for at least 365 days, though

the asset may not necessarily be available at the end of the period. As a result, our panel eliminates

short-lived coins, which potentially represent scams, but includes failed coins with a relatively longer

history of transactions. This helps to mitigate potential survivorship bias, and results in an unbalanced

panel of cryptocurrencies. As shown in the right panels in Figure 1, there is a wide range for the length

of the individual time series, with an upper bound of 3,000 observations. Also, the panels illustrate

that the number of available cryptocurrencies is less than 50 before September 2017, rapidly increases

3Note that this concentration is a common feature of cryptocurrency markets (see, e.g., Babiak et al., 2022).
4Our sample of almost 400 pairs is rather consistent with the number of assets commonly listed on major exchanges.

For instance, at the time of writing, Binance.com – the largest centralised exchange by trading volume – is listing 394
tokens as per Coinmarketcap.com.
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to 395 towards the end of 2019, and then slightly decreases to almost 300 by the end of the sample.

Although the data is available from 2014, our empirical analysis uses the panel of cryptocurrency

returns starting from September 1st, 2017 due to the limited number of available assets before this

date. Indeed, including the data before September 1st, 2017 could be problematic for the estimation

of the IPCA model, as the number of characteristic-managed portfolios approaches the number of

cryptocurrencies.

Nevertheless, we evaluate the impact of the size of the cross section on the main empirical results

by performing three robustness checks. First, we replicate the empirical analysis for the sub-samples

before and after the COVID-19 outbreak. This exercise demonstrates the performance of the IPCA

model estimated based on a different sample size. It further challenges the IPCA framework in the

environment with large price swings as observed in the cryptocurrency markets since early 2021.

Second, we recursively re-estimate the IPCA model on an expanding window basis, starting from the

initial 50% of the data. In this case, we evaluate the performance specifically in the second half and

further assess the out-of-sample asset pricing properties of the IPCA fit. Third, we slice the cross

section of assets in different quartiles based on size, liquidity and on-chain activity and shows that

the IPCA systematically outperform the other competing factor analytics. Overall, the results of our

robustness checks refute the concerns related to the size of the cross section, sampling issues, or the

estimation procedure.

2.1.1 Characteristics. Table 1 provides an overview of 28 characteristics we use as instruments

in the IPCA methodology. We group them into four categories: on-chain activity measures, including

new addresses (new add) and network-to-market value (bm); trading frictions, such as the average

daily bid-ask spread (bidask) and idiosyncratic volatility (ivol); past returns, such as momentum

(r22 1) and short term reversal (r2 1); and others, such as the CAPM alpha (capm α) and the daily

historical Value-at-Risk at 5% (VaR(5%)). We follow Freyberger et al. (2020) and Liu et al. (2022) in

the classification of characteristics. Appendix B contains a detailed description of the characteristics,

the construction, and the relevant references.

Table 2 reports summary statistics for various characteristics and return predictors. For each

variable, we report the cross-sectional mean, median, standard deviation, and relevant percentiles

of the cross-sectional distribution of the time-series averages. Notably, the distribution of most av-

erage characteristics is positively skewed. This is most evident for new addresses (new add) and
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active addresses (active add). Similarly, trading volume ($volume), market capitalization (size),

and Amihud (2002) ratios (illiq) are highly positively skewed. This is due to a handful of large

cryptocurrencies - Bitcoin and Ethereum, among others - that are more heavily traded and more

liquid than the average cryptocurrency pair.

2.2 Observable factor portfolios

We first construct our own cryptocurrency market factor (mkt) as a the returns in excess of the risk-

free rate on the value-weighted portfolio of the cryptocurrency pairs in our data. This produces a

proxy for market risk that is best positioned to coincide with the variation in our cryptocurrency

return panel. The risk-free rate is approximated as the daily one-month Treasury bill rate. The

market factor is motivated by a relatively high concentration of cryptocurrency markets (see market

capitalization in Table 2).

In addition to the market risk factor, we consider a variety of long-short portfolios following the

existing empirical asset pricing literature (see, e.g., Liu et al., 2022). We construct a comprehensive list

of long-short strategies based on size, momentum, volatility, liquidity, reversal, and on-chain activity.

Some of these factors have been shown to capture a significant amount of the variation in realised and

expected cryptocurrency returns (see, e.g., Brauneis et al., 2021; Cong et al., 2021b; Leirvik, 2021),

while some others have been adapted from the equity literature (see, e.g., Fu, 2009; Nagel, 2012).

Our construction of observable factors follows a standard approach. Specifically, for each day

we sort individual cryptocurrencies into quintiles based on the value of a given characteristic. We

then combine the cryptocurrencies within each quintile into a value-weighted portfolio based on the

current relative market capitalization of each pairs. The next day we track the return on each quintile

portfolios. Notice for the momentum factors we consider a one day skipping period after the portfolio

formation to mitigate the bid-ask bounce or short-term reversal effects (see, e.g., Nagel, 2012).

We calculate the returns on a long-short strategy as the spread between the returns of the fifth and

first quintile portfolios, or the opposite, depending on the risk factor we investigate. Furthermore,

because the market capitalization is highly skewed in few pairs (see Table 2), we apply a 40% restriction

on the weight of a given pair within a given quintile portfolio (see, e.g., Jensen et al., 2022). The choice

of 40% is inconsequential. However, it produces more realistic capital allocation within each portfolio,

which could otherwise be almost uniquely concentrated in a single asset without considering the weight
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cap. Alternatively, we could employ an equal-weighted portfolio allocation scheme for each quintile.

However, given the low liquidity of smaller cryptocurrencies, some of which are akin to microcap

firms, this would mechanically inflate the returns of each long-short strategy (see, e.g., Babiak et al.,

2022).5

We first construct a size factor by sorting digital assets based on their log market capitalization.

We calculate the market capitalization of each pair as the current supply of coins times their current

market price expressed in USD. The current supply is the number of coins or tokens that have been

mined or generated and corresponds to the number that are currently in public and company hands,

which are circulating in the market and/or locked/vested. We construct the risk factor as a long-

short portfolio that goes long (short) on small (large) assets. We assume that shorting occurs on the

margin at a 1x leverage ratio. As a result, each time the portfolio is rebalanced, one can invest only

a fraction of wealth in new short positions.6 Table 3 reports the average return and volatility of the

size portfolio; consistent with Liu et al. (2022) the average returns on the size factor are negative.

In addition to market and size, we consider two alternative liquidity factors. First, for each trading

day, we sort individual cryptocurrencies into quintile portfolios based on the value of their Amihud

(2002) ratio. We calculate this as the ratio between the absolute daily return and the average daily

trading volume in $mln. We construct the illiq risk factor as a long-short portfolio which goes long

(short) on less liquid (more liquid) assets. We consider an alternative liquidity factor by replacing the

Amihud (2002) ratio with the synthetic bid-ask spread measures as proposed by Corwin and Schultz

(2012) and Abdi and Ranaldo (2017). We sort each asset in quintile based on their average bid-ask

spread (see, e.g., Babiak et al., 2022), and construct the bidask risk factor by taking a long (short)

position on value-weighted portfolios with the highest (lowest) bid-ask spread. Table 3 shows the

sample performance of both portfolios. Interestingly, both risk factors produce large and negative

Sharpe and Sortino ratios. Differently from the market portfolio, the illiq risk factor generates a

positive returns skewness. This is not entirely unexpected from a long-short portfolio strategy vs

long-only market allocation.

5In a set of unreported results we show that although the performance of equally-weighted portfolios grows stronger,
the explanatory power of observable risk factors remain subpar the IPCA.

6Although quite complicated to implement, the equivalent of a short sale can be created via margin trading on major
exchanges, including Binance, Poloniex, and Bitfinex. In practice, these exchanges offer the possibility to borrow a
given crypto at the current market price, and to sell it, and then to buy it back later to cover the investor’s position.
Another interpretation one could give to our long-short portfolio is a weighting scheme relative to a benchmark, a value-
weighted market portfolio. In this case, a long (short) position could be interpreted in relative terms as overweighting
(underweighting) some cryptocurrency pair with respect to its market weight (see, e.g., Liu et al., 2022).
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We also consider two alternative long-short portfolios based on either realised or idiosyncratic

volatility. We compute the realised volatility factor (rvol) using the estimator proposed by Yang

and Zhang (2000) based on OHLC daily prices with a rolling period of 30 days. We then sort

cryptocurrency pairs into value-weighted quintile portfolios from low to high realized volatility. A

short position is initiated in low-volatility pairs, whereas a long position is taken in high-volatility

pairs. In addition, we follow Ang et al. (2006) and measure the idiosyncratic volatility for each

cryptocurrency as the standard deviation of the residuals from a 30-day rolling window regression of

the individual returns onto the market portfolio. The ivol strategy returns are the return differential

between quintile portfolios of the lowest and highest idiosyncratic volatility. Table 3 shows that

sorting pairs either by their realized or idiosyncratic volatility generates a negative and significant

average return, with a Sharpe ratio comparable to both liquidity factors. This negative performance

is consistent with previous literature (see, e.g., Liu et al., 2022).

Next, we consider a variety of alternative specifications for past performance. First, we consider

a simple short-term reversal strategy (r2 1) as in Nagel (2012); Babiak et al. (2022). Then, we

construct several cross-sectional momentum factors as introduced by Jegadeesh and Titman (2001).

We consider three different “look-back” periods of l = 7, 14, 22, 31 trading days. We allocate each pair

into a given quintile based on its cumulative log return over the previous l-days. We then construct a

corresponding momentum strategy as the long-short portfolio that goes long (short) on past winner

(loser) assets. Table 3 shows that, at least unconditionally, all momentum strategies produce positive

Sharpe ratios, with an average value of 0.02 daily (0.4 annualised). In addition to momentum we also

consider long-short portfolios constructed based on the maximum daily returns over the last l = 7, 30

days. We construct quintile portfolios from the lowest to highest maximum daily returns over the past

l days. We thus construct a long-short strategy (maxl) by taking a long position on the highest max

and a short position on the lowest max portfolio. Consistent with the existing literature on equity

markets both maxl portfolios produce quite large negative Sharpe ratios (see, e.g., Bali et al., 2011).

The last three long-short portfolio strategies we consider focus on blockchain network activity.

First, we consider an on-chain ”value” strategy as inspired by Pagnotta and Buraschi (2018). We

construct this “value” proxy by using the network-to-market value ratio (bm): the cumulative number

of unique addresses over the current available supply, times the current USD price. As Pagnotta and

Buraschi (2018) suggest, the intrinsic value of a cryptocurrency/token could be directly dependent on
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the growth of the network, which can be proxied by the cumulative number of blockchain addresses

that actively transact in a native coin. By dividing the cumulative number of active addresses to the

market capitalization, one can approximate the extent of market over- or under-valuation of a given

token with respect to its network dispersion.

Clearly, in the absence of cash flows and a clear definition of book value, the bm measure represents

an approximation, at best. Therefore, in addition to network-to-market value ratio, we follow Cong

et al. (2021b) and also construct long-short portfolios by sorting assets based on the number of unique

addresses that appeared for the first time in a transaction of the native coin in the network, or based

on the number of unique addresses that were active on a given day in the network either as a sender

or a receiver (see Appendix B). Table 3 shows that all risk factors based on on-chain activity produce

a positive Sharpe ratio which is in line with the market portfolio.

2.3 Instrumented principal components analysis

A factor pricing approach is the most common empirical analysis to evaluating the trade-off between

risks and rewards in financial markets. It assumes that the information content in the cross section

of individual asset or portfolio returns can by summarised by a small set of factors. This approach

does not depend on the asset class under investigation, and is grounded on fundamental asset pricing

theory. Assuming the no-arbitrage condition holds, a stochastic discount factor mt+1 exists and the

Euler equation Et [mt+1ri,t+1] = 0 holds for any excess return ri,t+1. Consequently, the conditional

expected return satisfies

Et [ri,t+1] =
Covt (mt+1, ri,t+1)

V art (mt+1)︸ ︷︷ ︸
βi,t

(
−V art (mt+1)

Et [mt+1]

)
︸ ︷︷ ︸

λt

, (1)

in which βi,t is conditional exposure of asset i at time t to systematic risk factors and λt is the

time-varying price of risks associated with factors. Assuming mt+1 is linear in factors ft+1, the cross

section of excess returns satisfies a linear factor model:

ri,t+1 = αi,t + βi,tft+1 + εi,t+1, (2)

where Et [εi,t+1] = 0, Et [ft+1εi,t+1] = 0, λt = Et [ft+1] and αi,t = 0 holds for all i and t.
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Notably, the nature of factors ft+1 and the dynamics of intercepts αi,t and loadings βi,t are left

unspecified by the asset pricing theory. In this paper, we jointly estimate αi,t, βi,t and ft+1 via the

instrumented principal components analysis (IPCA) method developed by Kelly et al. (2019) and

used more recently by Büchner and Kelly (2022) and Kelly et al. (2022) for modelling option and

corporate bond returns. The IPCA framework assumes that risk factors are latent and extracted from

the cross section of test assets, whereas intercepts and loadings are time-varying and linear in asset

characteristics:

αi,t = z
′
i,tΓα, βi,t = z

′
i,tΓβ, (3)

where zi,t denotes an L × 1 vector of (cryptocurrency) characteristics. The mapping between char-

acteristics and dynamic intercepts and factor loadings is linear and is determined by the matrices

Γ = [Γα,Γβ]. The main hypothesis throughout this paper is that the coefficients of the intercept

Γα to be zero for all assets. This implies that the variation in the realised and expected returns is

consistent with a beta/expected return model, rather than being a reflection of compensation without

risk. By restricting Γα = 0, the state-space in Eq.(2)-(3) is estimated via an alternating least squares

approach, which iterates the first order conditions of Γβ and ft+1

f̂t+1 =
(

Γ̂′βZ
′
tZtΓ̂β

)−1
Γ̂′βZ

′
trt+1, ∀t, (4)

and

vec
(

Γ̂β

)
=

(
T−1∑
t=1

Z ′tZt ⊗ f̂t+1f̂
′
t+1

)−1(T−1∑
t=1

[
Zt ⊗ f̂ ′t+1

]′
rt+1

)
, (5)

where Zt and rt+1 denote the stacked arrays of instruments and returns, respectively. In the main

results we also estimate an unrestricted model with Γα 6= 0 and then test for the null hypothesis that

Γα = 0 via non-parametric bootstrap. The extension of the alternating least squares approach for

the unrestricted model becomes consequential by simply adding a constant to the vector of factors.

One comment is in order. Table 2 shows that a significant fraction of characteristics have a rather

skewed cross-sectional distribution. To mitigate the impact of skewed observations on the estimation

procedure, we build upon Kelly et al. (2019) and cross-sectionally rank, demean, and scale the char-

acteristics to exist in the [−1, 1] interval. This places characteristics on the same investment scale as
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standard long-short portfolios, and at the same time mitigate the impact of outlying observations so

that the estimate of Γ is directly comparable across characteristics.

2.3.1 Motivating evidence for IPCA. A natural starting point to understand the value of

instrumenting the conditional betas within an otherwise standard factor pricing model is a panel

predictive regression of cryptocurrency returns on the same set of characteristics used to estimate the

IPCA. The left and middle panels of Table 4 reports two different sets of results; a simple pooled

OLS where individual fixed effects have been discarded, and a panel regression with individual fixed

effects. Notice that, to retain some sort of direct mapping with the IPCA estimation, we have cross-

sectionally re-scaled the characteristics to be in the [−1, 1] interval. We find that a moderately large

set of characteristics is indeed significant, although the in-sample predictive R2 is essentially zero.

Even when we add fixed effects, the fit does not significantly improve. In other words, although

there is evidence that characteristics and future returns tend to correlate, a standard panel predictive

regression would not excel in explaining the dynamics of realised returns.

The right panel of Table 4 expands the evidence on the raw returns and investigates the extent

to which cryptocurrency characteristics predict market betas. Instead of using the one-day ahead

returns as the target variable in the panel predictive regression, we plug in a measure of the future

realised market betas, calculated based on a 30-day rolling window regression. To avoid overlapping

observations, we consider the 30-day market beta at time t+ 30 in a predictive regression of the form:

βmkti,t+30 = γzi,t + constant + error.

The results shows that characteristics do indeed significantly predict market betas with a panel R2

of 1.9%. Compared to the 0.06% of the pooled OLS on the raw returns, the individual characteristics

have a substantially higher predictive content when it comes to individual risk exposure vis-á-vis

returns. Although this seems relatively low, recall that there is a fair degree of noisiness in the market

betas estimated with only 30 days of realised returns. In addition, several of the characteristics are

significant. Among the strongest predictors, we can find the $volume and illiq measures, the reversal

factors (max and rel to high), idiosyncratic volatility (vol), and turnover (turnover), each of which

with highly significant regression coefficients – coefficients which are directly comparable given the

characteristics have been cross-sectionally ranked and standardised.

Taken together, the results in Table 4 suggest that cryptocurrency characteristics offer some pre-

dictive ability for the market betas. On the other hand, the predictive content for the raw returns

15



seems to be relatively weaker. The specification of the panel regression is somewhat ad-hoc. The

results provided in Table 4 cannot help to distinguish between mispricing or risks as the main driving

force behind returns predictability (see, e.g., Daniel and Titman, 1998). The IPCA helps to answer

this question by unifying both lines of inquiry. As highlighted by Kelly et al. (2022), the IPCA allows

a researcher to distinguish the extent to which whether characteristics explain asset realised and ex-

pected returns due to a risk-based channel, or if characteristics predict returns because they proxy for

alpha above and beyond factor risk (i.e., mispricing or “anomaly” channel). The next section pursues

this investigation.

3 Empirical results

We report a series of statistical measures to assess the asset pricing performance of the IPCA compared

to both static and conditional observable factor models, and to a standard PCA. We follow Kelly

et al. (2019) and compute two alternative measures of aggregate goodness-of-fit for the panel of

cryptocurrency returns, namely the total R2
tot and the predictive R2

pred, which are defined as

R2
total = 1−

∑
i,t

(
ri,t+1 − β̂′i,tf̂t+1

)2∑
i,t r

2
i,t+1

, R2
pred = 1−

∑
i,t

(
ri,t+1 − β̂′i,tλ̂

)2∑
i,t r

2
i,t+1

, (6)

with λ̂ denoting the unconditional time-series mean of the factors. The R2
tot quantifies the extent to

which a given factor model captures the total variation in the realised returns. Instead, the R2
pred

captures how well differences in the average returns are explained through the model’s ability to

describe risk.7 We also compare different latent and observable factor model specifications based

on two additional metrics used in asset pricing literature (see, e.g., Büchner and Kelly, 2022; Kelly

et al., 2022). More precisely, we first construct a time series R2
ts by aggregating individual R2

i =(
1−

∑
t(ri,t+1−β̂′i,tf̂t+1)

2∑
t r

2
i,t+1

)
across the time series

R2
ts =

1∑
i τi

∑
i

R2
i , (7)

7Notice that the denominator represents the square of the returns not demeaned. However, this is because the
historical average daily returns of individual assets is close to zero statistically speaking, that is a forecasting from the
unconditional mean would not deviation significantly from a forecast at zero. This is consistent with Gu et al. (2020)
who argue that out-of-sample comparison of fits against historical mean is flawed when it comes to individual assets.
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with τi the number of non-missing observations in a given cryptocurrency pair. Second, we report

the average over the time series the cross-sectional R2
t =

(
1−

∑
i

(
ri,t−β̂′i,t1 f̂t

)2∑
i r

2
i,t

)
,

R2
cs =

1

T

∑
t

R2
t , (8)

where R2
cs quantifies the cross-sectional strength of the signal produced by either the IPCA or the

observable factor models. This is akin to a Fama and MacBeth (1973) where the factors are “tradable”,

or represents replicable trading strategies. The last metric used to compare different models is the

so-called relative pricing error (RPE), which is defined as

RPE =

∑
i α

2
i∑

i r
2
i

, (9)

with ri = τ−1i
∑

t ri,t+1 the asset’s time series average returns and αi = τ−1i
∑

t

(
ri,t+1 − β̂′i,tf̂t+1

)
the average time series error, or “pricing error”. A value of RPE closer to zero implies that a given

model explain most of the systematic variation in the returns, whereas an RPE at, or above, 100%,

implies that a given model does not capture any, or very little, systematic risk. Notice that in the

main results we focus on the relative pricing error for the managed portfolios only. This is because

both the alphas and the unconditional average returns for individual assets are all very close to zero.

As a result, the RPE from daily individual returns would be very sensitive to outlying observations.

On the other hand the larger scale and more compact distribution of alphas and average returns on

the managed portfolios allows for a more reliable measurement of the RPE as a ratio.8

3.1 Asset pricing performance

3.1.1 In-sample results. Panel A of Table 5 reports the performance of a restricted IPCA model

with Γα = 0. This implies that the variation of cryptocurrency returns are consistent with a

beta/expected return model. In addition to the performance for the restricted IPCA model, Ta-

ble 5 also reports the bootstrap p-values for the hypothesis test of H0 : Γα = 0 with a number of

latent factors ranging from K = 1 to K = 7.9 For K = 1, 2, 3 the bootstrap results show that we

8Although the RPE for individual assets is much more noisy, the results still highlight a comparatively lower relative
pricing error from the IPCA against PCA and observable risk factors. Results are available upon request.

9We follow Kelly et al. (2019) and for each model specification, we construct the test statistic based on the identical
implementation of a “wild residual” bootstrap approach. We first draw 10,000 pseudo-samples under the null hypothesis
H0 : Γα = 0. For each sample, we construct a Wald-type statistic measuring the distance between the restricted and
unrestricted models. We then calculate the fraction of simulated statistics exceeding the corresponding value from the
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can strongly reject the null hypothesis Γα = 0. However, the bootstrap p-values show that when

the number of latent factors is K > 3, the variation in cryptocurrency returns is solely captured by

compensation to risk. Furthermore, the information criterion (IC) calculated as in Bai and Ng (2002)

shows that a four-factor IPCA model maximizes the information content of the latent factors. By

coupling the bootstrap and the IC, we choose the IPCA4 as our baseline IPCA specification. This

choice is further supported by comparing the performance of the restricted and unrestricted IPCA

models. For the interested reader, the full comparison between restricted and unrestricted IPCAs

is reported in Appendix C. For K > 3 factors, the additional variation in expected returns that is

captured by an unrestricted intercept is negligible compared to a restricted IPCA model.

In addition to the IPCA, Panel A also reports the results from a standard, static, PCA. Given the

unbalanced nature of the panel of returns and the presence of missing data, the PCA is implemented

by using an alternating least squares procedure to estimate the static principal components (see Ilin

and Raiko, 2010). At the individual returns level, the R2
tot, R

2
ts and R2

cs from a PCA with seven

latent factors (PCA7) are comparable, if not better, than our baseline IPCA4. However, PCA provides

a dismal description of expected returns at the cryptocurrency pair level; the R2
pred is an order of

magnitude lower than the IPCA for each K. This suggests that although a static PCA provides a

fairly accurate description of the common variation in the returns, it is the information from the

characteristics and the consequential dynamics of the loadings that provides a better description of

risk compensation across assets.

Panel A also reports the same set of performance measures using the set of characteristic-based

portfolios as test assets. As a result, all R2 measures can be redefined in terms of managed portfolios

based on IPCA parameters Γβ (see Kelly et al., 2019).10 The explanatory power of the IPCA is

markedly stronger for portfolio returns than for returns on individual assets. For instance, the baseline

IPCA4 specification generates an R2
tot,x (R2

pred,x) of 51.9% (1.93%). This compares to 16.9% (0.37%)

for the static PCA7 model. Both the time-series and cross-sectional aggregations of the R2 are also

in favour of the IPCA4 model: the R2
ts,x (R2

cs,x) for IPCA is equal to 45% compared to 10% (43%

compared to 13%) from the PCA7 model. The RPE is also significantly in favour of the IPCA model;

data to obtain the p-value for the IPCA model considered.
10Kelly et al. (2019) argues that the IPCA methodology incorporates a portfolio notion that circumvents a common

problem in empirical asset pricing; the choice of the test assets through which a given factor model can be tested. When
looking at equity markets, researchers tend to use double-sorted portfolios formed on different characteristics, including
size and book-to-market ratios (see, e.g., Fama and French, 2015). Nevertheless, the choice of the most appropriate
portfolios has been a source of debate (Lewellen et al., 2010; Daniel et al., 2012).
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the RPE for the IPCA4 is down to 6.6% compared to a 78% from the static model with seven latent

factors. This finding is consistent with prior results for equity, corporate bond, and option returns,

where the relative price error of IPCA tends to be smaller for managed portfolios (see, e.g., Kelly

et al., 2022).

Turning to observable risk factor models, Panel B of Table 5 provides the same set of performance

metrics obtained by replacing the latent factors, either with or without instruments, with a series

of long-short portfolio returns. Liu et al. (2022) shows that three observable risk factors, the excess

returns on the market, size, and momentum, can span a great deal of the cross-sectional variation

cryptocurrency returns at a weekly frequency. Cong et al. (2021b) consider a four factor based on the

network-to-market value ratio to proxy for a valuation ratio based on on-chain network activity. We

expand their factor structure based on the results in Table 3: in addition to mkt, size, r22 1 and

bm, we include liquidity (bidask), realised volatility (rvol), and reversal (max7). In total we consider

seven observable factors, so that a comparable analysis can be made with the IPCA and the PCA

specifications. A full description of each factor portfolios is provided in Section 2.2.11

The static factor model specification follows a standard factor pricing model with the betas esti-

mated from a panel regression of cryptocurrency returns on observable risk factors. The instrumented

version of the observable risk factor model can still be estimated using the IPCA procedure. More

specifically, letting gt denote the set of observable risk factors, the instrumented principal component

model can be rewritten as

rt+1 = z′i,tΓβgt+1 + ηt+1 = vec (Γβ)′ (zi,t ⊗ gt+1) + ηi,t+1, (10)

Given that the factors are pre-specified, this specification can be estimated by evaluating only the

matrix of loadings Γβ from the associated first-order condition. We impose a zero-intercept constraint,

i.e., Γα = 0, for both the static and dynamic observable factor models to align with the baseline

IPCA specification and isolate the jointly explanatory power of the latent factors and the individual

characteristics. The notation is consistent across models, meaning that with FFl (IFFl) we indicate a

static (instrumented) observable factor model with l = 1, . . . , 7 risk factors included.

The results have three interesting aspects. First, the explanatory power of the IPCA factors

11In a set of unreported results, we replace bidask with illiq, rvol with ivol, and max7 with max30. All alternative
specifications produce lower R2

tot and R2
pred, so we choose the best possible specification for the observable factors model.
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outperforms observable risk factors by a significant margin. For instance, our baseline IPCA4 model

generates a 13.4% R2
tot, whereas a static factor model with seven portfolios (FF7) delivers a 10.8%

R2
tot. Perhaps more importantly, a model with seven observable factors (FF7) produces a dismal

explanation of the conditional expected returns, with an R2
pred of -0.02% compared to 0.32% from

the IPCA4. Second, turning to the time-series and cross-sectional metrics, while the R2
ts is somewhat

comparable between the IPCA4 and the FF7 model, the R2
cs from the former is 11.3% versus a 8.6%

static observable factor model with seven risk factors. Third, the performance gap in favour of the

IPCA is markedly larger for portfolio returns. For instance, the baseline restricted IPCA4 specification

generates an R2
tot,x (R2

pred,x) of 51.9% (1.93%) against a 19.5% (0.8%) from the static and 21.8%

(0.88%) from the instrumented observable factor models.

Both the time-series and cross-sectional aggregation of the R2 for managed portfolios are also in

favour of the IPCA4 model: the R2
ts,x is equal to 45% for IPCA4 versus 12.3% from the FF7 model.

Similarly, the R2
cs,x for the IPCA4 is equal to 43% compared to 12.9% for the FF7 model. The relative

pricing error is also considerably in favour of the IPCA, with an RPE of 6.66% for the IPCA4 against

a 63.5% for the FF7 model. Interestingly, the performance gap between a static versus a dynamic

observable factor model is quite small.

3.1.2 Out-of-sample results. We expand the previous in-sample performance analysis and con-

duct an out-of-sample evaluation of the IPCA and other competing factor model specifications. The

models are estimated for an expanding window starting from March 1st 2020, that is, the first half

of the data available are used as “burn-in” sample. We perform forecasts for each period, based

on the estimated parameters and factor returns at that time. For observable factors, we use the

actual portfolio returns in the forecast construction. For the IPCA factors, our computations of the

out-of-sample factor returns follows the framework of Kelly et al. (2019). We then evaluate the out-

of-sample performance of each model based on the realized returns and model forecasts of individual

cryptocurrencies and managed portfolios.

Table 6 summarises the results. The specification with four latent factors explains 11.5% of the

total variation in the out-of-sample realized individual returns. By comparison, the R2
tot obtained from

the FF7 and IFF7 observable factor models is 8% and 8.5%, respectively. Further, IPCA produces a

substantially better risk-based explanation of the average returns across individual assets: the out-

of-sample R2
pred is 0.3%, compared to a 0.03%, 0.02%, and 0.09% obtained from the PCA7, the static
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FF7 and the instrumented IFF7 observable factor models, respectively. The R2
ts and the R2

cs are also

higher for IPCA against the observable factor models, regardless of a number of factors considered.

Similar to the in-sample results, the gap between the IPCA and observable factor models widens by

using managed portfolios as test assets. The R2
tot,x for the IPCA4 increases to 52.7%, while it reaches

the maximum of 19.2% (22.23%) for the FF7 (IFF7) model. Perhaps more importantly, the IPCA4

substantially improves upon the PCA7, and both observable factor model specifications, i.e., FF7 and

IFF7, when it comes to describe risk compensation. This is shown by a substantially larger R2
pred,x

– 2.2% for IPCA4 versus 1.1% for the best performing competing factor model – and a much lower

relative pricing error RPE – 10.9% for the IPCA4 versus a 57.3% obtained from the best performing

alternative factor model. This result confirms that, compared to both PCA and observable factors, the

IPCA better captures some fundamental risk-reward relationships that would be otherwise buried in

the noise of highly volatile daily returns. More generally, regardless of the number of factors required

to eliminate the mispricing, the IPCA factors maintain a fine statistical performance throughout.

3.1.3 Mean-variance efficiency. To test the mean-variance efficiency of the IPCA factors vs

static latent/observable risk factors, we carry out a series of simple asset pricing tests based on

different portfolios as test assets. We study the mean-variance efficiency of two sets of portfolios

– a set of managed portfolios produced using the IPCA methodology, and a series of double-sorted

portfolios based on size and alternative characteristics. We compare the baseline IPCA4 model against

the PCA7 and the instrumented observable factor model IFF7.

Figure 2 reports the results. For convenience, we highlight significant alphas with filled markers.

The plots also report the average absolute alpha for each specification, to quantify the average size

of mispricing across different models. Note that, for the conditional factor models IPCA4 and IFF7,

the alphas are computed as the time-series average of the period-by-period portfolios residuals. For

the static factor model PCA7, the alphas are computed as intercepts from time series regressions of

portfolio returns on the latent factors. For comparability, we assume a portfolio volatility target of

5% daily, consistent with the historical volatility of long-short portfolios, and rescale the portfolio

weights accordingly using only backward looking information.

The main results confirm that the IPCA significantly reduces mispricing: the average absolute

pricing error for the IPCA4 is 0.16% on a daily basis, compared to 0.59% and 0.49% from the PCA7,

IFF7 models, respectively. Thus, IPCA produces less than a half average absolute pricing errors than
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do benchmark latent factor models and existing portfolios. We also find that the estimated alphas

from both the PCA and the observable factors are clustered around the 45-degree line. This indicates

that static latent or observable factors may not provide an accurate risk-based explanation of managed

portfolio returns.

Table 7 breaks down the alphas from the IPCA and both the PCA and observable factor models

for each characteristic separately. Panel A reports the results for the full sample of daily returns corre-

sponding to Figure 2. This analysis shows that the average absolute alpha from IPCA is substantially

smaller than those in the competing factor models. Further, the alphas of managed portfolios are

uniformly smaller in absolute value in the conditional IPCA model, with the exception corresponding

to the market beta (capm β). More generally, the IPCA seems to unequivocally provides a more accu-

rate risk-based description of the cross-sectional variation of the managed portfolio returns compared

to both PCA and observable factor models.

We investigate the mean-variance efficiency of IPCA factors also using a set of 25 double-sorted

portfolios as test assets. These portfolios should provide a more challenging case because they are not

targeted by the IPCA estimation. Figure 3 reports the alphas from IPCA4, PCA7, or IFF7, respectively.

We report the results for portfolios sorted on size and r22 1 (Panel A), size and bm (Panel B), and

size and max7 (Panel C). Two observations are noteworthy. First, double-sorted portfolios represent

indeed a more challenging set of test assets for IPCA. For instance, the average absolute daily alpha

for portfolios sorted on size and bm is 0.24% versus the 0.16% on the 28 managed portfolios. This is

also reflected in the performance of PCA. With the exception of the double-sorted portfolios on size

and max7, the PCA7 and IPCA7 produces a similar average absolute pricing error. Yet, the pricing

performance of the IFF7 is rather dismal compared to the IPCA. For instance, the average absolute

alpha for the size and r22 1 portfolios is 0.3% versus 0.18% from the IPCA4. A similar gap applies

to the size and bm double-sorted portfolios.

The second observation from Figure 3 pertains the significance of the alphas and the correlation

with the raw return across portfolios. Take for instance the 25 portfolios sorted on size and r22 1; 18

(12) portfolios have significant alphas in the IFF (PCA7) model, whereas the IPCA4 produces at most

5 portfolios with significant abnormal returns. The discrepancies in the significance of the pricing

errors between the IPCA and the competing strategies persists across different sorting characterstics

as shown in Panel B and C of Figure 3. In addition, when we visually assess the distribution of
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alphas, we find that portfolio alphas from the PCA and observable factor models exhibit a clear

pattern: portfolio alphas increase with raw returns. This suggests a systematic shortcoming of both

the PCA and observable risk factors in pricing the double-sorted test portfolios.

3.1.4 Factor tangency portfolios. We now compare the IPCA, PCA, and observable factors, and

report the ex ante unconditional tangency portfolio performance for each group of factors, to describe

their multivariate efficiency. The optimal allocation is based on recursive forecasts that we carry out

by expanding the window of observations starting from March 1st 2020. We then calculate the mean-

variance portfolio using the mean and covariance matrix of estimated factors through t and tracking

the post-formation t + 1 return. We assume a portfolio volatility target of 5% daily, consistent with

the historical volatility of long-short portfolios, and rescale the portfolio weights accordingly using

only backward looking information.

Table 8 shows summary statistics of tangency portfolios combining up to seven IPCA or observable

factors. It reports the daily average returns, the Sharpe ratio and skewness, as well as the alphas of

tangency portfolios from both a CAPM model (αCAPM ) and the alpha obtained by regressing the

returns of the tangency portfolios on the seven observable risk factors considered in the main analysis.

The tangency portfolio for the IPCA model yields a daily Sharpe ratio of 0.84, which is twice as large

as the best Sharpe ratio of 0.4 for the FF7 model. When we consider more than four latent factors,

the performance of the IPCA tangency portfolios do not significantly improve. This is consistent with

the bootstrap results in Table 5, which suggests that a four factor IPCA specification is sufficient to

provide a risk-based explanation of cryptocurrency returns. The tangency portfolio constructed from

PCA do not outperform the equivalent based on observable factors. For instance, the daily Sharpe

ratio from PCA7 is half the FF7 equivalent.

On a risk-adjusted perspective, the tangency portfolios from the IPCA substantially outperform

both PCA and observable risk factors. For instance, the αCAPM for the IPCA4 is as high as 4%, against

a 1.1% and 1.7% obtained from the PCA7 and FF7, respectively. Interestingly, the seven observable

factors can not span the performance of the tangency portfolios based on the IPCA4 or PCA7 factors.

The αF7 is 3.7% (t-stat = 19.5) and 1.05% (t-stat = 3.9), respectively. The spanning property is

confirmed by looking at the tangency portfolios from the observable factors: once conditioning on the

factors itself, the alphas are all economically negligible and not statistically significant.
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3.2 Sub-sample analysis

Figure 1 highlights two main aspects of the sample under investigation, and in fact, of the cryptocur-

rency market at large. First, the total market capitalization significantly increases from the onset of

the COVID-19 crisis; from the roughly $300 billions in March 2020, the total market value increased

tenfold, to an astonishing $3 trillions towards the end of 2021, then lost more than 60% of its value

by the end of the sample. Second, the size of the cross-section is fairly unbalanced before March 2020,

but stabilizes somewhat thereafter. This is a general feature of the cryptocurrency market, with the

number of tokens at the end of the sample almost doubling from the approximately 10,000 tokens

available in early 2020.

To test the reliability of the IPCA framework in different scenarios and market conditions, in

relation to both time-series and cross-sectional variation, we replicate the main empirical analysis

for two different non-overlapping sample: a sub-sample from September 1st 2017 to March 1st 2020

(the solid red vertical line in Figure 1), and another sub-sample from March 2nd 2020 to September

1st 2022. It is worth reiterating that by dividing the sample, we challenge the IPCA along two

dimensions. For the first sub-sample the panel of cryptocurrency pairs is highly unbalanced. It is

smaller on average, and steadily increases over time. For the second sub-sample, the cryptocurrency

market experienced significant drawdowns and volatility, while the size of the cross-section remained

relatively more stable. Such abrupt variations should provide additional insights into the robustness

of the asset pricing results across different conditions.

Table 9 reports the results for both sub-samples. Both the bootstrap test and the Bai and Ng

(2002) information criteria support a four factor structure for the IPCA across different periods.

Similarly, there is no sensible reduction of the relative pricing error RPE beyond three latent factors.

The performance of the IPCA versus PCA and observable risk factors is quite heterogeneous across

sub-samples. For instance, when we compare the two sub-samples, the R2
pred for IPCA4 improves

from 0.29% pre-Covid to 0.4% in the second sub-sample. Furthermore, the PCA and the observable

factor models both provide a less accurate description of the risk compensation across individual

cryptocurrency pairs with an R2
pred of 0.17% and 0.2%, respectively, in the period post March 1st

2020. However, the PCA shows a larger R2
tot for individual assets compared to the IPCA, and both

substantially outperform a FF7 model.

The R2
ts and the R2

cs also provide some mixed results, with the PCA substantially improving
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upon the IPCA over the second sub-sample. This is possible due to the more balanced nature of the

panel of observations over the second period. Nevertheless, compared to observable risk factors, the

IPCA model provides a better fit for the variation in both realized and expected returns as well as

a better characterization of both the time series and cross-sectional variation in the returns. This is

particularly evident for risk compensation as approximated by the R2
pred.

The use of managed portfolios as test assets provides some more clear-cut evidence in favour of

the IPCA. For instance, the R2
tot,x is 51% for the IPCA4 versus 21% and 24.9% from the PCA7 and the

FF7 models, respectively, in the period after March 1st 2020. The same applies for the R2
pred,x, with

the observable risk factors that deliver a 2.11% versus a 3.33% obtained from the IPCA4. Perhaps

more importantly, the IPCA provides a substantially lower relative pricing error compared to both

competing classes of factor models; the RPE from the IPCA4 is 8.4% (6.9%) for the first (second)

sub-sample, compared to a 90% and 84% (63% and 43%) from the PCA7 and FF7, respectively, over

the first (second) sub-sample.

3.2.1 Mean-variance efficiency. We replicate the asset pricing tests as reported in Section 3.1.3.

Figure 4 reports the scatter plot of the alphas obtained from the IPCA4, the PCA7 and the IFF7 model,

respectively. As for the full sample, for convenience, we highlight significant alphas with filled markers.

The plots also report the average absolute alpha for each specification, to quantify the average size

of mispricing across different models. The main results confirm that the IPCA pricing performance

is more consistent with mean-variance efficiency.

Turning to the first sub-sample, the average absolute pricing error across managed portfolios is

0.18%, compared to 0.51% from the PCA7 and 0.47% from the IFF7 factor models. Panel B shows

that the gap in terms of mean-variance efficiency widens in favour of the IPCA over the post-March

1st 2020 period. For instance, the average absolute alpha from the IPCA is at 0.22% daily, against

a 0.77% and 0.54% obtained from the PCA7 and IFF7, respectively. Interestingly, the significance of

individual alphas is slightly higher over the second sub-sample. For instance, pre-March 2020 there

are 7 managed portfolios alphas from the IPCA that are significantly different from zero. Instead,

over the post-March 2020 period the number of significant alphas from the IPCA grows to 9.

Figure 4 also shows that the estimated alphas from the PCA and the observable factors are more

clustered – compared to the IPCA – around the 45-degree line. This holds across both sub-samples.

Therefore, the evidence suggests that conventional latent or observable factor models may not be able
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to provide an accurate risk-based explanation of the cross-sectional variation of managed portfolio

returns over time. To a large extent, the results in Table 9 and Figure 4 confirm that the IPCA model

substantially reduces mispricing.

3.3 Individual assets quality and IPCA performance

Intuitively, returns on “low-quality” pairs, namely smaller cryptocurrency pairs with high trading

frictions, tend to exhibit different behavior in terms of their covariances with characteristics, including

liquidity and downside risk. For instance, Babiak et al. (2022) show that liquidity risk within the

context of cryptocurrency markets is not uniformly spread across assets, but tends to be concentrated

on assets with smaller market capitalization and lower trading volume. More generally, there is

abundant evidence in the equity literature that adverse selection and information asymmetries tend

to be concentrated on smaller, high volatile assets (see, e.g., Easley and O’Hara, 2004; Hendershott and

Seasholes, 2007). This cross-sectional heterogeneity possibly could potentially affect the performance

of factor pricing models.

In particular, the fact that smaller assets tend to be less liquid and more volatile raises the question

of whether adding smaller assets actually has any significant statistical and economic effect on the

main results, only because factor models may capture the variation of smaller assets at the expenses

of larger ones. It is worth noting that the concept of “small” vs “large” assets in the context of

cryptocurrency markets has non-trivial implications, considering the evident market concentration

and skewed distribution both in size and trading activity (see Table 2). In practice, any asset with

a market capitalization below the top 150, which at the time of writing is roughly $150 millions, can

be considered a micro-cap by equity standards.

To better understand the role of lower quality pairs on the asset pricing performance of the IPCA

versus both PCA and observable factor models, we break out model R2’s for individual returns

grouped according to three different characteristics. Each day, we sort the cross section of individual

assets in quartiles based on market capitalization, number of active addresses or the average daily

trading volume (see Section 2.2 for details). Then we measure the R2
tot and R2

pred from the IPCA, the

PCA and the observable risk factors separately for each quartile. Note these results are not based

on separate model re-estimation for each group of assets. This would mechanically allow each factor

model to fit different groups based on different parameters or weighting schemes. Instead, we slice the
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factor model performance by keeping factors and parameters fixed at their estimates from the unified

sample, and we recalculate the R2’s among each group of assets.

Table 10 reports the results. When we focus on the IPCA performance, the ability to explain

the common variation in the realised returns increases with the market capitalization, the number of

active addresses and the average trading volume. For instance, the R2
tot from the IPCA4 for smaller

assets is 9%, whereas is 27% for the large assets. Similarly, the explained total variation from the

IPCA4 is 11% for cryptocurrencies with a low number of active addresses, while is 22% for assets with

a higher network activity. Higher trading volume also coincides with a higher R2
tot from the IPCA4;

8.34% for assets with low trading volume compared to 28.7% for assets with high trading volume.

Opposite to the R2
tot, the ability of the IPCA to describe the differences in the expected returns

across assets seem to be inversely related to assets quality. For instance, the R2
pred from the IPCA4

is 0.48% for the smaller assets, whereas is -0.02% for the subset of cryptocurrencies with the highest

market capitalization. Similarly, for the group of cryptocurrencies with the lowest trading volume the

R2
pred from the IPCA4 is 0.56% against a 0.05% for the assets with high average trading volume.

Overall, the performance of the IPCA within the context of cryptocurrency markets is broadly

similar to the evidence on more traditional asset classes such as equity (see, Kelly et al., 2019).

The IPCA offers an especially accurate description of realised returns of “higher-quality” assets.

Instead, we see that IPCA produces a higher predictive R2 for “lower-quality” assets, meaning those

cryptocurrencies which are smaller in terms of market capitalization, less liquid and less active from

a fundamental blockchain perspective.

A similar pattern emerges for both the PCA and the observable factor models. When we compare

the IPCA against both PCA and observable factor models, Table 10 broadly confirms that our dynamic

latent factor model provides a more accurate risk-based description of realised and expected returns

across different groups of assets. For instance, the R2
tot from the IPCA4 for the smallest (largest )

assets is 9% (26.7%), against a 6.5% (24.3%) from the IFF7 model. Similarly, for the group of assets

with the smaller (larger) trading volume, the IPCA4 produces a total R2 of 8.4% (28.7%), against an

R2
tot of 5.2% (24.8%) obtained from the IFF7 model. Consistent with the full-sample results, the PCA

represents a rather challenging benchmark when it comes to explain the common variation in the

realised returns. However, the IPCA stands out for its predictive performance. For instance, within

the group of assets with a lower (higher) number of active addresses, the IPCA4 produces an R2
pred
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of 0.29% (0.13%) against the 0.03% (0.01%) of the PCA7 and the 0.08% (-0.03%) obtained from the

IFF7. Similarly, for assets with lower (higher) trading volume, the IPCA4 produces a predictive R2

of 0.56% (0.05%) against the 0.22% (0.01%) of the PCA7 and the 0.21% (-0.12%) generated by the

IFF7. Overall, the IPCA provides a more accurate risk-based explanation of the variation in expected

returns than both PCA and standard observable factor models.

3.4 Weekly returns

Our analysis has thus far focused on the daily return horizon. Given the relatively short history of

cryptocurrency markets (see Figure 1), the use of daily returns substantially increases the amount

of information that can be used to extract latent factor models and/or to construct observable risk

factors. However, daily returns are particularly volatile, especially within the context of cryptocur-

rency markets. Thus, it is possible that IPCA in part capture noisy fluctuations in the dynamic of

individual returns, effects that may be less influential at a lower frequency. In addition, by using

weekly returns, while the size of the cross section remains unchanged, the length of the time series is

substantially reduced, creating a further challenge for the extraction of latent factors.

As an extension and robustness assessment, we re-analyse the performance of the IPCA model

using a weekly aggregation of the returns and individual characteristics. A weekly aggregation of both

individual returns and observable risk factors is consistent with some of the existing literature, such

as Liu et al. (2022); Cong et al. (2021b). The basic structure for weekly returns is unchanged from the

main empirical analysis on daily returns, with the exception that individual returns are aggregated

weekly. Given that cryptocurrency markets are operational on a 24/7 basis, the weekly aggregation

is defined with a start time of Sunday 00:00:00 UTC. Individual characteristics are also aggregated

weekly, where the aggregation depends on the nature of the information. For instance, both the new

add and active add variables are aggregated weekly by summing up the daily observations. The

weekly market beta capm β is approximated as the average daily value within the week. The same

holds for liquidity measures such as illiq and bid-ask spreads.

Table 11 reports both the in-sample and out-of-sample performance of the restricted IPCA with

Γα = 0 versus a static PCA and an instrumented observable factors model.12 Similarly to the main

results, the weekly aggregation seems to favour a small-scale factor model to explain the variation

12We choose to report the instrumented observable risk factor model because it represents a more direct comparison
with the IPCA. Furthermore, the results from the static version of the observable risk factor model are slightly worse,
so that the dynamic version represents a more challenging benchmark for the IPCA.
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in both realised and expected returns. The bootstrap test suggests that a two-factor IPCA already

provides a risk-based explanation of the returns which is potentially solely based on risk exposures,

i.e., Γα = 0 for K ≥ 2. A more data-driven information criterion suggests that three latent factors

capture most of the comovement in the individual returns. Similarly, the relative pricing error on the

managed portfolios shows that there is no considerable pricing gain after an IPCA with three latent

factors. For these reasons, in the following we consider an IPCA3 as our baseline specification.

Focusing on the out-of-sample returns, the performance of the IPCA significantly increases. This

is potentially due to the higher signal-to-noise ratio of weekly returns compared to daily returns.

For instance, the R2
tot (R2

pred) obtained from the IPCA3 model on weekly individual returns is 19.7%

(0.9%), which is double the 11.5% (0.3%) obtained on daily returns. Also the time series and cross

sectional R2 are higher when using weekly returns. For instance, the IPCA3 fitted on weekly data

produces an R2
ts (R2

cs) of 25.2% (14.2%) compared to a more modest 20.3% (8.5%) for the daily

returns.

The explanatory power of the static PCA and the instrumented observable factors model also

increases when we use weekly returns. The out-of-sample R2
tot from the benchmark IFF7 model

jumps to 15.1% compared to a 8.5% based on daily returns. Similarly, the PCA7 performance goes

from 16.7% for daily returns to 23.2% for weekly returns. Nevertheless, the IPCA performance is still

substantially better than both static latent and observable risk factor models at the weekly frequency.

This is particularly clear when it comes to explain the variation in the average returns; the IPCA3

produces an R2
pred of 0.9% against a 0.36% and 0.26% from the PCA7 and IFF7, respectively. The

IPCA also provides a much more accurate risk-based representation of the variation in both realised

and expected returns of managed portfolios. For instance, the R2
tot,x (R2

pred,x) from the IPCA3 is

56.4% (7.6%) against a 34% (4.5%) and 26.9% (2.3%) obtained from the PCA7 and IFF7, respectively.

Perhaps more importantly, the IPCA3 produces a smaller relative pricing error of 6.6% compared to

46.8% and 68.4% obtained from both competing factor model specifications.

3.4.1 Mean-variance efficiency. Figure 5 reports the average absolute alphas for the conditional

IPCA and the competing latent and observable risk factor models. For the instrumented models

(IPCA3 and IFF7), the alphas are computed as the time-series average of the period-by-period port-

folios residuals. Instead, for the static latent factor model (PCA7) and observable factors (FF7), the

alphas are computed as intercepts from time series regressions of portfolio returns on the factors. All

29



portfolios are re-leveraged to yield 35% weekly volatility.

Similarly to the case of daily returns, the IPCA produces a substantially lower average absolute

pricing error, with a 2.9% from the IPCA3 versus 5.8% and 7.5% obtained from the PCA7 and IFF7,

respectively. Furthermore, the estimated alphas from the competing factor models are more clustered

around the 45-degree line compared to the IPCA. This suggests that, also at the weekly frequency,

the IPCA provides a risk-based explanation of the variation in managed portfolio returns which is

more consistent with theoretical underpinnings of mean-variance efficiency.

Delving deeper into the significance of individual managed portfolio alphas, Panel B of Table 7

shows that not only do both PCA7 and the benchmark IFF7 have more significant alphas compared to

the baseline IPCA3, but also that those significant alphas tend to have a much larger value annualized.

For instance, the αr7 1 is 6.8% for the IPCA3, while is more than 20% across all competing factor

models. Similarly, the αr30 1 is 5.6% for the IPCA model versus more than 12% (19%) for the

observable factor models (PCA). This indicates that, despite the smaller average absolute pricing error,

observable and standard latent factor models still provide a less accurate risk-based representation of

cryptocurrency returns.

4 IPCA factors interpretation

Understanding the nature of the IPCA performance is key to a more structural interpretation of the

results. In this section, we test for the driving factors in the dynamics of risk exposures and provide

an interpretation of the latent factors extracted from the cross section of individual returns based on

the IPCA methodology.

4.1 Expected returns and individual characteristics

Assuming the returns dynamics is solely described by individual characteristics, i.e., Γα = 0, the

expected returns from the IPCA are defined as Et [ri,t+1] = β̂′i,tf̂t+1, with β̂i,t = z
′
i,tΓ̂β a direct

function of zi,t, an L× 1 vector of observable cryptocurrency characteristics. As a result, by testing

the significance of the lth row in the parameter matrix Γβ, one can understand the role of each zi,t

characteristic for the dynamics of expected returns Et [ri,t+1].

We follow Kelly et al. (2019) and implement a bootstrap approach that tests the joint significance

for each individual characteristics across K latent factors. Let the lth row in the parameter matrix
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Γβ = [γβ,1, . . . , γβ,L]
′

correspond to the loadings on the K factors of the lth characteristic. The

null hypothesis is that the entire lth row must be zero; that is, the lth characteristic does not drive

the dynamics of the factor loadings. To test this hypothesis, we begin by estimating an unrestricted

IPCA model, in which coefficients of Γβ are not set to zeros, and save the estimated model parameters

{γ̂β,l}Ll=1, latent factors {f̂t}Tt=1, and managed portfolio residuals {d̂t}Tt=1. For each characteristic l,

we then compute the Wald-type statistic in the form Ŵβ,l = γ̂
′
β,lγ̂β,l. Next, we use the residuals to

resample the managed portfolio returns under the restriction γβ,l = 0K×1.
13 Then, we re-estimate

the IPCA model using these synthetic portfolio returns and compute the bootstrap test statistic

Ŵ b
β,l for the bth bootstrap draw. For the lth characteristic, the p-value of the null hypothesis test

equals the fraction of bootstrapped Ŵ b
β,l statistics exceeding the empirical value Ŵβ,l. Because all

of the characteristics are cross-sectionally rank standardized, the reported magnitudes are directly

comparable across characteristics.

Table 12 show the p-values for each of the 28 characteristics for five different IPCA specifications,

with K = 2, 3, 4, 5, 6, based on the full sample. In addition, we report the testing results for the

baseline IPCA3 and IPCA4 when we split the sample in pre and post Covid-19 outbreak. Finally,

the table also reports the testing results for the IPCA2 and IPCA3 specifications fitted on the weekly

aggregated returns.

Focusing first on the full sample, we find that only a handful of characteristics contribute to ex-

plain the dynamics of expected returns as indicated by p-values below the conventional 5% threshold.

For instance, for the IPCA3 specification, variables related to liquidity (illiq, bidask), past perfor-

mance (max7, and max30), and volatility (rvol, and ivol) are statistically significant at conventional

thresholds. The nature of the characteristics that drive the loadings for the IPCA4 model is similar,

albeit there are some differences. For instance, two trading frictions variables, such as std to and

std vol, are now significant with a p-value below 0.05. Yet, illiq, max7, max30 and ivol, are all still

significant at conventional levels. Interestingly, the higher the number of factors, the more “sparse”

is the nature of the loadings. This suggests an interplay between the role of the latent factors and

the characteristics in capturing the common variation in the returns.

13Starting from the restricted matrix

Γ̂l
β = [γ̂β,1, . . . , γ̂β,l−1, 0K×1, γ̂β,l+1, γ̂β,L]

′
,

the bootstrap portfolio returns are defined as x̂bt = ZtΓ̂
l
β f̂t + d̂bt , in which {d̂bt}Tt=1 are the residuals for the bth bootstrap

draw.
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Except for a few nuances, the testing results over the two sub-sample periods confirm the pattern

over the full sample. Liquidity, past performance, and volatility seem to play a major role for the

dynamics of the factor loadings. For instance, for the IPCA4 specification, illiq, max7, max30, and

ivol, are all significant at 5% levels across both sub-samples. A few changes also occur; for instance,

over the pre-Covid 19 period, a more parsimoniou three-factor IPCA model implies that few variables

related to liquidity, such as bid-ask and turnover also drive the dynamics of the factor loadings.

The last two columns of Table 12 shows the testing results for the aggregation to weekly returns.

The set of parameters Γβ for the weekly returns tend to be similar to daily returns. For instance,

both illiq and rvol are significant for the IPCA3 model estimated at either frequencies. With

the exception of the market beta (capm β), the testing results at the monthly frequency are mostly

consistent with the daily returns, both for the full sample and the sub-samples.

One comment is in order, a simple correlation analysis shows that some of the individual character-

istics are potentially quite correlated; for instance, $volume is quite correlated with size, and bidask

is quite correlated with illiq. As a result, rather than discussing the exact characteristic, our aim

is to detect the underlying economic forces that drive the factor loadings. Thus, the results suggest

that to a large extent the factor loadings, and therefore expected returns, are primarily affected by

liquidity, volatility, and past performance.

4.2 IPCA and observable risk factors

We formally tests whether coupling latent and observable risk factors significantly improves the ex-

planatory power of the IPCA model. We estimate an extended IPCA model of the form

ri,t+1 = β′i,tft+1 + δ′i,tgt+1 + εi,t+1. (11)

with the term β′i,tft+1 being the same as in the main IPCA specification. The new term is the portion of

the return variation described by the M×1 vector of observable risk factors gt+1. For consistency, the

loadings on both observable and latent risk factors are instrumented using the same set of individual

asset characteristics, i.e., δi,t = z′i,tΓδ where Γδ is an L×M mapping from characteristics to loadings.

The estimation of Eq.(11) is a simple extension of the original IPCA in Eq.(4)-(5). That is, the

model with nested observable risk factors is mapped to the original IPCA by augmenting the factor

specification to include gt+1. A detailed description of the estimation procedure appears in Kelly
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et al. (2019).

Based on Eq.11 the incremental explanatory power of the observable risk factors gt+1 can be

evaluated in two ways. First, we directly test for the incremental contribution of gt+1 by testing for

the significance of the corresponding matrix of parameters Γδ. Second, one can compare the asset

pricing performance of the IPCA with and without additional observable factors, and directly verify

the incremental asset pricing performance over a given IPCA specification.

Panel A of Table 13 formally tests whether the inclusion of observable factors improve over IPCA.

We report the results for both a joint test on the inclusion of multiple factors, from FF1 to FF7, and

for the inclusion of one single factor. The tests, nest the various sets of observable risk factors outlined

in Section 2.2 (represented by columns) with different number of latent IPCA factors (represented by

rows). Individual hypothesis tests show that the market portfolio (mkt), the size factor, and realised

volatility (rvol) carry some significant loading when added to the IPCA4 specification we used in the

main empirical analysis. Differently, when conditioning on five latent factors, only the market portfolio

carry some significant additional effect. When we test jointly the additional information content of

observable factors, again the hypothesis test points towards a significant additional explanatory power

of the market portfolio for most IPCA specifications.

Despite the marginal significance of the market portfolio returns conditional on the IPCA fac-

tors, Panel B of Table 13 shows that none of the observable factors offer an economically relevant

improvement of the IPCA’s total or predictive R2. For instance, the R2
tot obtained by including seven

observable risk factors to an IPCA4 model is 13.65% against a baseline 13.37% (labelled as FF0 in

Table 13). More importantly, including observable risk factors to explain the variation in expected

returns is actually economically slightly detrimental; for instance, the R2
pred obtained by including

seven observable risk factors to an IPCA4 model is 0.29% against a baseline 0.32%.

Turning to the managed portfolios, as we add more latent factors, the marginal contribution of

observable factors to explain the common variation in realised and expected returns is negligible, in

fact slightly negative. For instance, the R2
tot,x from the IPCA4 + FF7 factor model is 51.2% versus

51.9% obtained from the baseline IPCA4 model. Similarly, an IPCA with four latent factors produces

a predictive R2
pred,x of 1.93% versus a 1.77% obtained from an expanded model including seven ob-

servable factors. Overall, the evidence shows that adding more observable factors does not materially

improve the ability of the IPCA to provide a risk-based explanation of either realised or expected
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returns. This is consistent with some of the existing results within the context of traditional equity

(see, e.g., Kelly et al., 2019), corporate bond (see, e.g., Kelly et al., 2022) and option markets (see,

e.g., Büchner and Kelly, 2022).

4.3 Latent factors and asset characteristics

Because the factors in the IPCA framework are not ordered and are only identifiable up to a rotation,

creating a detailed interpretation of the individual factors is problematic, perhaps even inappropriate.

Moreover, we caution that any labeling of the factors is imperfect, because each factor is influenced

to some degree by all of the characteristics, and the orthogonality condition implies that none of

the latent factors will match an exact characteristic. Nonetheless, in this section, we build upon the

intuition of Ludvigson and Ng (2009) and provide an interpretation of the latent factors based on the

marginal R2
marg of a univariate regression of each of the 28 different managed portfolios onto each

estimated IPCA factor, one at a time, using the full sample of observations.

For the ease of exposition, in Figure 6 we report the results for four IPCA specifications with

K = 2, 3, 4, 5 latent factors. We show the cumulative R2 for each managed portfolio on each factor

as a measure of correlation. Focusing on the two latent factors from the IPCA2 model, the first factor

is primarily correlated with the capm β and partly with on-chain network activity, although on a

smaller magnitude compared to the second factor. The latter more strongly correlates with liquidity,

volatility, trading frictions, and the VaR(5%). Overall, one could identify Factor 2 in the IPCA2 as a

market inefficiency factor.

The top-right panel of 6 reports the R2 of the regressions of individual managed portfolios on the

IPCA3 three latent factors. Again, Factor 1 is primarily correlated with market risk and partly with

on-chain activity. The second factor seems to correlate for the most part with short-term reversal r2 1

and bm, in that the marginal R2 for is higher than the one corresponding to Factor 1 or 3. Indeed,

while max7 is also quite correlated with Factor 2, the lion’s share in terms of correlation is played by

Factor 3. The same applies for $volume and size. As a result, Factor 2 within the IPCA3 specification

seems to be primarily related to valuations and short-term performances. Factor 3 shows a much more

heterogeneous correlation, in particular in relation to trading friction measures and volatility.

The bottom-left panel of Figure 6 reports the marginal R2 obtained regressing the managed port-

folios and extracted factors from an IPCA4 model. As we add one more latent factor, the identification
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becomes slightly more clear-cut. For instance, Factor 1 still primarily correlates with the market beta.

However, Factor 2 now is more clearly related to two measures of short-term reversal, such as max7

and r2 1. With the exception of turnover, Factor 3 is primarily correlated with measures value, such

as bm, size, and $volume, and growth such as new add and active add. In other words, Factor 3 can

be interpreted as a “value” factor as it combines both valuation and growth aspects in the spirit of

the Fama-French HML portfolio. Finally, Factor 4 is mostly correlated with both past performance,

liquidity (as proxied by bidask and illiq) and measures of trading frictions, such as std to and

std vol.

Finally, the bottom-right panel of Figure 6 reports the R2 from the auxiliary regressions on the

IPCA5 five latent factors. Factor 1 is primarily correlated with exposure to market risk. By adding a

fifth latent factor, the identification of Factor 2 almost uniquely coincides with intermediate momen-

tum r30 14. Similarly, Factor 3 is almost unequivocally correlated with both max7 and max30. With

the exception of turnover and $volume, Factor 4 is primarily correlated with measures value, such as

bm, and size, and growth such as new add and active add. Interestingly, Factor 4 is also “contami-

nated” by measures of past performances. Nevertheless, past performances are more strongly related

to Factor 5. The latter also strongly correlates with measures of volatility, liquidity, and downside

risk, as proxied by VaR (5%).

5 Do equity and cryptos share risk factors?

We expand on our analysis of factor models within cryptocurrency markets by asking whether factors

from cryptocurrency market price equity, and vice-versa. This question builds on previous literature,

including Liu and Tsyvinski (2021) and Bianchi et al. (2022), who emphasize that full market inte-

gration should imply that both markets share the same factors and factor premiums. We leverage the

flexibility of the IPCA approach and test the significance of the additional information content that

equity risk factors brings to explain the common variation in realised and expected cryptocurrency

returns.

We begin by formally testing whether coupling observable equity factors with the latent factors

extracted from the cross section of cryptocurrency returns significantly improves the explanatory

power of the IPCA. We estimate an extended IPCA model as in Eq.(11), with the term β′i,tft+1 being

the same as in the main IPCA specification. The new term δ′i,tgt+1 represents the portion of the return
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variation described by the M × 1 vector of equity risk factors gt+1. For consistency, the loadings on

the equity risk factors δi,t = z′i,tΓδ are instrumented using the same set of individual cryptocurrency

characteristics zi,t, where Γδ is an L ×M mapping from characteristics to loadings. This allows us

to give a more structural interpretation of the integration between the equity and the cryptocurrency

markets to the extent that it actually exists in the data. As a matter of fact, in this setting the betas

on cryptocurrency returns on equity factors take the interpretation of empirical hedge ratios (see, e.g.,

Kelly et al., 2022).

We consider as gt+1 the Fama and French (2015) five-factor model: the excess return on the market

(MKT), the size factor (SMB), value (HML), profitability (RMW) and the investment factor (CMA).

We follow Kelly et al. (2019) and construct a test of the incremental explanatory power of equity risk

factors after controlling for the baseline IPCA specification. The null hypothesis is H0 : Γδ = 0L×M

from which we construct a Wald-like test statistic as Wδ = vec
(

Γ̂δ

)′
vec
(

Γ̂δ

)
. Wδ measures the

distance between the model with and without the equity risk factors gt+1. If Wδ is large relatively

to sampling variation, one can conclude that the equity risk factors carry significant information

for the variation of cryptocurrency returns. The sampling variation estimates, and therefore the p-

values, are obtained by using the same wild bootstrap method as in Section 4.1.14 One comment is

in order. Unlike equity, cryptocurrencies are traded on a 24/7 basis. This means that there are some

discrepancies in the numbers of observations between cryptocurrency and equity returns. We match

both samples by indexing to equity dates, that is, for those days for which we do not have equity

returns available, we discard the cryptocurrency returns.

Panel A of Table 14 reports the testing results both when using one factor at a time – considering

separately the contribution of MKT, SMB, HML, RMW, CMA – and when adding each factor cumu-

latively – from a one-factor model (F1) to a five-factor model (F5). Irrespective of being added one

at a time or all of them together, observable equity factors are redundant as we add IPCA factors.

None of the Fama-French factors are statistically significant at conventional levels after controlling

for the commonality in realised individual returns as captured by the IPCA latent factors.

Panel B of Table 14 shows that none of the equity risk factors offer an economically significant

improvement over the IPCA’s total or predictive R2. For instance, by adding the five Fama-French

14First we construct residuals of managed portfolios d̂t+1 = Z′tε̂
∗
t+1 from the estimated model. Then, for each iteration

b, we resample the portfolio returns imposing the null hypothesis Γδ = 0. Next, for each bootstrap sample, we re-
estimate Γδ and construct the associated test statistic W̃ b

δ . Finally, we compute the p-value as the fraction of W̃ b
δ that

exceeds Wδ.
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factors to the baseline IPCA4 model, both the R2
tot and the R2

pred remains virtually unchanged. The

same holds when we use managed portfolios as test assets; the R2
tot,x and R2

pred,x obtained from the

IPCA4 essentially do not change by adding equity risk factors. Overall, Table 14 suggests that once we

control for IPCA latent factors, the information content of equity risk factors to explain the variation

in realised and expected cryptocurrency returns is negligible.

Overall, by leveraging on the flexibility of the IPCA framework and delving deeper into the system-

atic variation in cryptocurrency returns and the joint factor structure shared by equity and cryptos,

we provide evidence that once we condition for the common variation in individual cryptocurrency

returns, equity risk factors do not bring economically valuable information on both realised and ex-

pected cryptocurrency returns. Our results expand those of some of the previous literature (see, e.g.,

Liu and Tsyvinski, 2021; Bianchi et al., 2022), both by considering the post Covid-19 period and by

studying highly noisy and volatile daily returns. The latter in particular poses a particular challenge

for the latent factor model in extracting fundamental pricing information based on cryptocurrency

characteristics.

5.1 Factors spanning regressions

The relatively low additional information content of equity risk factors when added to IPCA factors

extracted from cryptocurrency returns, does not mean that the two markets are necessarily segmented.

Risk factors can be highly correlated and therefore capture similar sources of risk. We calculate a set

of correlations between the Fama and French (2015) equity factors and the latent factors extracted

from the IPCA on cryptocurrency returns. This provides additional, albeit indirect, evidence on

the similarities and differences in the pricing kernel between cryptocurrencies and equity markets.

Because latent factors can only be identified up to a rotation, we assess the correlations between

crypto and equity factors using a series of spanning regressions, that is, we regress each of the latent

cryptocurrency factors individually on all of the Fama-French equity factors.

The first three columns of Table 15 shows the regression results when the dependent variable is

the first three latent factors obtained from the baseline IPCA4 model. Panel A reports the regression

results for the full sample of observations. With the exception of Factor 1, none of the five Fama-

French factors is statistically significant at the conventional 5% threshold. However, the equity market

factor is indeed significantly correlated with Factor 1, with a spanning regression coefficient that is
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significant at the 1% level. Nevertheless, the constant, meaning the unexplained returns, is strongly

significant for all the three latent factors.

The multiple correlation coefficients (
√
R2) is also quite low, 26% for Factor 1 to 5% for Factor

3. Panel B of Table 15 reports the results for the period from March 2020 to the end of the sample.

Although the multiple correlation coefficients increase, the equity market factor remains the only

one significantly correlated with Factor 1. Similar to the full sample, neither Factor 2 nor Factor 3

extracted from the IPCA4 are correlated with conventional Fama-French equity risk factors.

In order to gain a better perspective on the spillover effects between equity and cryptocurrency

markets, we now regress the Fama-French equity risk factors on each one of the observable cryptocur-

rency factors used in the main empirical analysis (see Section 2.2 for a description). The central part

of Table 15 reports the results. Three interesting facts emerge; first, with the exception of the bm

portfolio, the constant, meaning the unexplained returns, is strongly significant for all cryptocurrency

factors. Interestingly, although the intercept for the bm portfolio is not significant, none of the equity

risk factors have significant spanning regression coefficients either. This suggests that bm produces

average returns which are neither correlated with equity risk factors, nor significantly different from

zero.

Second, the cryptocurrency and equity market factors are positively and significantly correlated.

This confirms the conventional wisdom that the aggregate market trend in both asset classes may be

correlated.15 Related to that, the third fact that emerges from the spanning regressions is that the

correlation between observable equity and cryptocurrency risk factors tend to increase in the second

half of the sample. All of the
√
R2 increase, with the cryptocurrency market factor now significantly

correlated with the HML portfolio at a 1% level. Nevertheless, and consistent with the IPCA spanning

regressions (first three columns), the correlation between equity and cryptocurrency factors is far from

perfect For instance, with the exception of the mkt factor, all of the
√
R2 are below 20%.

Intuitively, the correlation between IPCA and equity risk factors seem rather small. However, to

quantify what actually “small” means in this setting, one needs to look at the correlation between the

IPCA and the observable cryptocurrency factors. On the one hand, this gives us a benchmark to gauge

the correlation between IPCA and equity factors. On the other hand, this allows us to understand

how much overlap there is in the information content between IPCA and traditional cryptocurrency

15See for instance https://www.bloomberg.com/news/articles/2022-01-25/bitcoin-is-moving-in-tandem-with-stocks-
like-never-before-chart.
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factors á-la Fama and French. The last three columns of Table 15 report the spanning regression

results where we regress the first three latent factors from an IPCA4 on the seven observable risk

factors used in the main empirical analysis.

Although the regression intercepts are still strongly significant, the multiple correlation coefficients

are much larger compared to the equity risk factors. For instance, the
√
R2 of the three latent

IPCA factors on all seven observable cryptocurrency portfolios are 82%, 19% and 31%, respectively.

Interestingly, the correlation between IPCA and observable cryptocurrency factors is quite stable

when we focus on the second half of the sample. Despite a higher correlation though, the unexplained

factor returns are still large and significant. This suggests that (1) equity risk factors do not provide

useful information about the latent IPCA factors, and (2) observable cryptocurrency factors do indeed

provide useful information, although they do not span the latent factor space with sufficient accuracy.

Overall, Table 15 provides some insight on the intersection between equity and cryptocurrency

markets. On the one hand, the relatively low correlation between crypto and equity risk factors

that permeats from the regression analysis, suggests that market segmentation may still potentially

represent an impediment to cross-asset fundamental spillovers between equity and cryptocurrencies,

compared to other asset classes such as bond (see, e.g., Kelly et al., 2022), foreign exchange and

commodities (Asness et al., 2013). On the other hand, the presence of a moderate correlation between

markets, as shown for instance by the first IPCA latent factor and the equity market portfolio,

potentially suggests that investors’ hopes on the “diversification” benefits of cryptocurrencies may

have been ill-posed (see, e.g., Baek and Elbeck, 2015; Yermack, 2015; Biais et al., 2020; Liu and

Tsyvinski, 2021).

As a complementary evaluation of the cross-asset pricing performance, in Appendix C we look

at the pricing error on equity portfolios based on a Fama-French five-factor model compared to the

baseline IPCA3 crypto factor model. We measure the extent to which the latent factors from the IPCA

fits on cryptocurrency returns produce comparable average alphas vs. the Fama-French equity factor

model. We consider as test assets 25 portfolios sorted on size and book-to-market as test assets.

Figure C1 shows the results. The average absolute pricing error is 3.4% annualized when we use

the five-factor Fama and French (2015) model. This is almost a tenfold smaller than when we use

the IPCA factors extracted from the cross section of individual cryptocurrency returns: the average

absolute alpha from the IPCA4 is 29.5% annualised. In addition, for the IPCA4 model, the alphas
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are clustered around the 45-degree line, which suggests that the factors extracted from the panel of

cryptocurrency returns do not provide significant pricing information for equity markets. Results are

similar for 25 portfolios sorted by size and momentum (bottom panels).

6 Conclusion

We build upon an instrumented principal component analysis and show that the characteristics/expected

return relationship within the context of cryptocurrency markets is driven by compensation for the

exposure to latent risk factors. Our approach uses both returns and characteristics to jointly estimate

a set of latent factors that better explain the total variation in realised and expected returns. As a

result, our model provides a dynamic characterization of expected returns and risk premiums without

taking a dogmatic stand a priori on (1) which characteristics matter and (2) which test assets should

be used to understand the risks and returns in cryptocurrency markets. We see both these properties

as crucial within the context of this fast growing, and arguably still relatively unknown asset class.

Empirically, we show that a parsimonious IPCA factor model outperforms a benchmark observ-

able risk factors model built upon prior literature. That is, the IPCA explains a larger fraction of

daily realized and expected cryptocurrency returns and yields better predictions that result in smaller

pricing errors. These results hold for both individual asset returns and managed portfolios, during

both pre and post COVID-19 crisis periods, and for weekly aggregation of returns and characteristics.

In addition, by comparing equity and cryptocurrency factors, within a self-contained asset pricing

framework, our results highlight an increasing, although not perfect, correlation between equity and

cryptocurrency risk factors. Nevertheless, conditional on the IPCA factors extracted from cryptocur-

rency returns, none of the standard equity risk factors provide significant information to understand

risk compensation in cryptocurrency markets.
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Table 1: Asset characteristics by category

This table lists 28 characteristics used in our empirical analysis. We group them into four categories: on-chain measures,
trading frictions, past returns, and other. We follow Freyberger et al. (2020) and Liu et al. (2022) in the classification
of characteristics. We report detailed variable definitions in Appendix B. The data are sampled daily from September
1st 2017 to September 1st 2022, where a day is defined with a start time of 00:00:00 UTC. Daily prices and volume are
aggregated across more than 80 different centralised exchanges.

On-chain measures

(1) new add
New addresses: The number of unique addresses that appeared for the first time
in a transaction of the native coin in the network.

(2) active add
Active addresses: The number of unique addresses that were active in the network either
as a sender or receiver. Only addresses that were active in successful transactions are counted.

(3) bm
Network-to-market value: The cumulative number of unique addresses
over the current available supply times the current USD price.

Trading frictions

(4) $volume
Trading volume: The total amount of coins/tokens transferred across wallets
within and across centralised exchanges.

(5) size

Market capitalization: The market capitalization is defined as the product of the
current available supply times the current USD price. The current available supply
is calculated as the current supply minus the coins that have been burned.

(6) rvol
Realised volatility: The daily realised volatility calculated based on OHLC prices
following the methodology propose by Yang and Zhang (2000).

(7) bidask
The bid-ask spread: A daily bid-ask spread calculation based on OHLC prices. It represents
the average of the Abdi and Ranaldo (2017) and Corwin and Schultz (2012) approximations.

(8) illiq
Illiquidity ratio: The ratio between the absolute value of the cumulative intraday returns
and the daily trading volume expressed in $ (see Amihud, 2002).

(9) capm β
Capm beta: The market beta calculated based on a 30-day rolling window.
The market portfolio is calculated as the value-weighted average of the asset returns
available at each day t.

(10) turnover Turnover: the last day trading volume ($volume) over the current available supply.

(11) dto
De-trended turnover: The ratio of daily volume ($volume) to current available supply
minus the daily market turnover and de-trend by its 180 trading days (see Garfinkel, 2009).

(12) ivol

Idiosyncratic volatility: The standard deviation of the residuals from the CAPM based
on a 30-day rolling window. The market portfolio is the value-weighted average
of the asset returns available at each day t.

(13) std to
The standard deviation of the residuals from a 30-day rolling window regression
of daily turnover on a constant as in Chordia et al. (2001).

(14) std vol
The standard deviation of the residuals from a 30-day rolling window regression
of daily trading volume ($volume) on a constant as in Chordia et al. (2001).

(15) rel to high
Closeness to the 90-day high: the ratio of the coin price in $
at the end of the previous day over the previous 90 day high price.

(16-17) max* Maximum daily return in the previous 7 or 30 days following Bali et al. (2011)

(18-19) vol shock *d

Volume shock: the log deviation of trading volume from its trend estimated over a rolling period
of 30 or 60 days. The log standard deviation computed over the same rolling window is used
to standardise the estimates due to cross-sectional imbalances (see Babiak et al., 2022).

Past returns
(20) r2 1 Short-term reversal as in Jegadeesh (1990).

(21-24) r* 1 Cumulative return from 7, 14, 22, and 31 days before the return prediction to one day before.

(25) r30 14
We define intermediate momentum as the cumulative returns from 30 days before
prediction to 14 days before.

(26) r180 60
We define long-term reversal is the cumulative return from 180 days before
the return prediction to 60 days before.

Other
(27) capm α The excess return from a CAPM calculated based on a 30-day rolling window.

(28) VaR(5%) The historical Value-at-Risk at 5% calculated based on past 90-day returns.
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Table 2: Descriptive statistics for asset characteristics

This table reports summary statistics for characteristics and return predictors. For each variable, we report the cross-
sectional mean, median, standard deviation and relevant percentiles of the distribution of individual time-series averages.
The data are sampled daily from September 1st 2017 to September 1st 2022, where a day is defined with a start time
of 00:00:00 UTC. Daily prices and volume are aggregated across more than 80 different centralised exchanges.

Percentiles

Obs. Mean Median Std 1 5 25 75 95 99

On-chain measures

new add 609,399 1616.08 6.73 17931.73 1.06 1.61 3.45 17.00 190.73 34786.19

active add 609,399 3674.60 24.32 39004.67 2.15 4.59 12.23 65.62 540.78 66690.87

bm 590,652 1.13 0.012 21.55 0.001 0.001 0.011 0.021 0.152 0.531

Trading frictions

$volume ($mln) 541,129 3.72 0.06 33.06 0.00 0.00 0.01 0.34 4.24 55.75

size 590,652 16.17 16.04 2.18 11.24 12.87 14.67 17.42 19.81 22.56

rvol (%) 595,224 15.05 12.12 12.85 5.02 6.55 9.55 17.33 31.95 49.45

bidask (%) 609,399 8.28 7.66 4.22 2.87 4.07 5.99 9.73 14.09 19.81

illiq 459,840 50.68 3.81 185.80 0.00 0.04 0.67 25.61 236.70 526.31

capm β 597,549 0.93 0.98 0.21 0.20 0.45 0.85 1.06 1.17 1.29

turnover (%) 530,054 6.56 0.42 77.65 0.00 0.02 0.11 1.28 6.85 110.87

dto 353,936 -0.26 0.05 8.58 -25.18 -0.31 -0.01 0.22 1.88 11.13

ivol (%) 597,549 9.17 7.94 4.63 2.70 3.95 5.94 11.49 19.18 23.49

std to 531,011 0.09 0.01 0.65 0.00 0.00 0.00 0.01 0.10 2.24

std vol 542,080 1.29 1.23 0.50 0.49 0.63 0.88 1.66 2.05 2.85

rel to high (%) 574,244 56.37 55.76 8.90 33.84 42.64 50.83 61.57 70.34 80.66

max7 (%) 607,029 13.10 11.45 5.87 5.48 7.12 9.27 15.52 25.69 33.78

max30 (%) 597,944 25.32 22.21 11.36 10.00 12.98 17.67 31.11 48.49 65.26

vol shock 30d 462,699 -0.07 -0.07 0.08 -0.32 -0.19 -0.11 -0.03 0.03 0.11

vol shock 60d 434,558 -0.11 -0.10 0.18 -0.61 -0.32 -0.16 -0.04 0.08 0.23

Past returns

r2 1 (%) 609,398 -0.20 -0.23 0.26 -0.67 -0.52 -0.35 -0.07 0.19 0.54

r7 1 (%) 607,029 -0.78 -0.95 1.71 -3.78 -2.63 -1.73 -0.24 1.56 7.10

r14 1 (%) 604,659 -1.34 -1.76 3.61 -7.27 -5.15 -3.25 -0.40 3.84 14.02

r22 1 (%) 601,104 -2.00 -3.06 6.68 -11.91 -8.90 -5.30 -0.49 7.25 27.13

r31 1 (%) 597,549 -2.44 -4.06 10.04 -17.03 -12.48 -7.18 -0.15 11.79 45.87

r30 14 (%) 597,549 -1.79 -2.64 5.72 -10.22 -7.70 -4.62 -0.48 6.10 23.32

r180 60 (%) 538,694 -3.74 -11.78 53.80 -71.02 -51.40 -27.08 7.16 57.46 261.76

Other

capm α (%) 597,549 -0.10 -0.14 0.33 -0.56 -0.44 -0.24 -0.03 0.28 1.51

VaR(5%) (%) 574,244 16.70 14.62 7.17 7.27 9.07 11.85 19.75 31.59 38.69

45



Table 3: Observable risk factors

This table reports descriptive statistics including the mean, standard deviation, Sharpe ratio (annualised), Sortino ratio
(annualised), and skewness of the daily returns of portfolios used as a proxy of sources of systematic risks. We report
detailed description of each long-short strategy in Section 2.2. The data are sampled daily from September 1st 2017 to
September 1st 2022, where a day is defined with a start time of 00:00:00 UTC. Daily prices and volume are aggregated
across more than 80 different centralised exchanges.

Liquidity Volatility Past returns On-chain activity

mkt size bidask illiq rvol ivol r2 1 r14 1 r22 1 r31 1 max7 max30 bm new active

Mean (%) 0.13 -0.63 -0.84 -0.70 -0.87 -1.05 0.04 0.20 0.13 0.04 -1.34 -1.21 0.20 0.09 0.34
Std (%) 4.32 3.09 9.02 6.33 8.11 8.84 7.13 6.63 6.37 6.18 7.82 8.42 4.60 5.24 4.92
SR (annual) 0.57 -3.90 -1.78 -2.10 -2.06 -2.26 0.10 0.57 0.40 0.12 -3.27 -2.76 0.82 0.32 1.31
Sortino 0.83 -6.03 -3.07 -3.69 -3.56 -3.91 0.16 0.90 0.62 0.18 -5.75 -4.75 1.41 0.41 1.77
Skew -1.18 -0.30 -0.08 1.03 -0.13 -0.30 -0.51 -0.50 -0.39 -0.49 -0.37 -0.55 1.03 -2.97 -1.05

Table 4: Characteristics, returns, and market betas

This table reports the estimated coefficients from a series of panel regressions of individual returns (Panel A) and market
betas (Panel B) on 28 characteristics used in the main empirical analysis. We report estimates, robust standard errors,
and corresponding p-values. A full description of characteristics and returns is provided in Section 2.1. The data are
sampled daily from September 1st 2017 to September 1st 2022, where a day is defined with a start time of 00:00:00
UTC. Daily prices and volume are aggregated across more than 80 different centralised exchanges. We label with ∗∗∗,
∗∗, ∗ those coefficients significant at a 1%, 5%, and 10% confidence level.

Characteristic Panel A: Realised returns Panel B: Market β

Pooled OLS Fixed effects Fixed effects

Estimate Std. Error Pr(> |t|) Estimate Std. Error Pr(> |t|) Estimate Std. Error Pr(> |t|)

new add -0.019 0.023 0.397 -0.033 0.025 0.182 -0.003 0.012 0.826
active add 0.007 0.025 0.780 -0.016 0.030 0.592 0.000 0.016 0.995
$volume -0.024 0.023 0.300 -0.043 0.029 0.145 0.129 0.019 0.000 ***
illiq -0.075 0.012 0.000 *** -0.065 0.012 0.000 *** 0.028 0.008 0.001 ***
bidask -0.035 0.011 0.001 *** -0.025 0.011 0.024 ** 0.006 0.006 0.359
size 0.046 0.015 0.002 * 0.022 0.014 0.100 -0.019 0.012 0.111
bm -0.038 0.019 0.044 ** -0.148 0.044 0.001 *** -0.080 0.036 0.027 **
turnover 0.045 0.013 0.001 *** 0.093 0.038 0.015 ** -0.108 0.032 0.001 ***
dto -0.003 0.022 0.896 0.012 0.027 0.646 -0.056 0.017 0.001 ***
max7 0.005 0.005 0.374 0.005 0.006 0.395 -0.011 0.005 0.020 **
max30 -0.021 0.010 0.043 ** -0.027 0.010 0.009 *** 0.059 0.006 0.000 ***
rel to high -0.024 0.014 0.080 * -0.025 0.014 0.075 * 0.062 0.010 0.000 ***
vol shock 30d -0.036 0.014 0.010 ** -0.027 0.014 0.046 -0.034 0.009 0.000 ***
vol shock 60d 0.014 0.013 0.277 0.010 0.013 0.446 -0.023 0.007 0.001 ***
capm α -0.032 0.014 0.021 -0.025 0.014 0.070 0.013 0.008 0.108
capm β 0.046 0.016 0.003 *** 0.043 0.016 0.007 ***
rvol -0.018 0.009 0.051 ** -0.015 0.010 0.116 0.000 0.011 0.993
ivol 0.038 0.018 0.034 ** 0.048 0.019 0.011 ** -0.091 0.015 0.000 ***
VaR 5% 0.008 0.016 0.612 0.012 0.015 0.438 0.074 0.011 0.000 ***
r2 1 -0.028 0.010 0.003 *** -0.029 0.010 0.003 *** 0.003 0.001 0.008 ***
r7 1 0.015 0.011 0.154 0.014 0.010 0.163 -0.017 0.003 0.000 ***
r14 1 0.048 0.014 0.001 *** 0.044 0.014 0.001 *** -0.005 0.003 0.112
r22 1 0.024 0.015 0.111 0.021 0.015 0.154 -0.005 0.003 0.148
r31 1 -0.104 0.026 0.000 *** -0.102 0.026 0.000 *** 0.008 0.012 0.491
r30 14 0.079 0.018 0.000 *** 0.072 0.018 0.000 *** -0.001 0.005 0.845
r180 60 0.036 0.010 0.000 *** 0.023 0.008 0.006 *** 0.008 0.006 0.174
std to -0.065 0.017 0.000 *** -0.061 0.017 0.000 *** 0.020 0.012 0.099 *
std vol 0.000 0.009 0.976 0.006 0.010 0.584 -0.021 0.010 0.031

R2
adj(%) 0.063 0.077 1.298

Obs. 594,837 594,837 583,382
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Table 5: In-sample asset pricing performance

This table reports a series of asset pricing performance measures outlined in Section 3. Panel A reports the performance
of the restricted (Γα = 0) IPCA and standard PCA models with K = 1, . . . , 7 latent factors. In addition, we report the
values of Bai and Ng (2002) information criteria for each specification of latent factor models as well as the p-values
for the test of Γα = 0 for IPCA based on a wild bootstrap with 10,000 draws. Panel B reports the performance
of observable factor models including one through six portfolios. The models with observable factors are estimated
using standard static time series regressions (labelled as FFl) or using the IPCA methodology where the loadings are
dynamic by instrumenting with characteristics (labelled as IFFl). The data are sampled daily from September 1st 2017
to September 1st 2022, where a day is defined with a start time of 00:00:00 UTC. Daily prices and volume are aggregated
across more than 80 different centralised exchanges.

Panel A: Latent factors

IPCA PCA

IPCA1 IPCA2 IPCA3 IPCA4 IPCA5 IPCA6 IPCA7 PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7

R2
tot (%) 11.07 12.01 12.74 13.37 13.98 14.50 15.08 10.95 12.95 14.52 16.06 17.45 18.69 19.82

R2
pred (%) 0.00 0.15 0.31 0.32 0.33 0.33 0.33 0.00 0.02 0.02 0.04 0.06 0.06 0.06

R2
ts (%) 18.61 18.89 19.14 19.39 19.51 19.63 19.69 18.94 19.30 19.69 20.12 20.54 20.92 21.27

R2
cs (%) 8.98 9.85 10.63 11.32 11.96 12.52 13.13 8.59 10.33 11.75 13.14 14.42 15.59 16.63

R2
tot,x (%) 16.76 33.72 43.36 51.91 53.57 56.51 58.38 13.64 14.27 14.44 16.92 17.48 17.81 18.32

R2
pred,x (%) 0.03 0.49 2.01 1.93 1.96 1.95 1.95 0.01 0.10 0.12 0.37 0.41 0.45 0.47

R2
ts,x (%) 8.18 26.42 36.53 45.16 46.91 49.90 51.94 5.75 6.43 6.60 9.33 9.91 10.27 10.82

R2
cs,x (%) 12.34 25.14 34.92 43.25 45.17 48.62 50.45 10.60 10.87 10.95 12.21 12.47 12.62 13.00

RPE 99.48 84.03 6.43 6.66 5.86 4.70 4.91 99.52 95.55 94.67 83.02 81.00 79.43 78.42

IC -7.47 -7.58 -7.62 -7.67 -7.58 -7.53 -7.46 -6.73 -6.74 -6.74 -6.77 -6.77 -6.78 -6.78
H0 : Γα = 0 (pval) 0.00 0.00 0.00 0.02 0.07 0.98 0.96

H0 : Γα = 0 (pval)

Panel B: Observable factors

Static loadings Instrumented loadings

FF1 FF2 FF3 FF4 FF5 FF6 FF7 IFF1 IFF2 IFF3 IFF4 IFF5 IFF6 IFF7

R2
tot (%) 9.53 10.26 10.37 10.52 10.67 10.79 10.87 9.29 9.97 10.05 10.08 10.16 10.20 10.23

R2
pred (%) -0.01 -0.04 -0.03 -0.03 -0.03 -0.02 -0.02 -0.01 -0.01 -0.01 0.00 0.02 0.03 0.05

R2
ts (%) 16.79 17.48 17.64 17.91 18.10 18.22 18.30 15.95 16.51 16.66 16.73 16.85 16.87 16.90

R2
cs (%) 7.25 8.03 8.12 8.29 8.43 8.53 8.60 7.11 7.83 7.92 7.96 8.04 8.08 8.11

R2
tot,x (%) 11.71 16.46 17.77 18.12 18.82 19.21 19.47 13.12 18.29 19.91 20.13 20.89 21.40 21.76

R2
pred,x (%) -0.05 0.41 0.40 0.43 0.59 0.67 0.79 -0.06 0.49 0.49 0.51 0.68 0.75 0.88

R2
ts,x (%) 4.53 9.18 10.48 10.88 11.67 12.07 12.34 5.97 11.08 12.73 12.96 13.81 14.34 14.72

R2
cs,x (%) 8.46 12.06 12.33 12.50 12.75 12.80 12.90 9.35 12.96 13.56 13.72 14.03 14.35 14.54

RPE 102.15 81.11 81.61 80.22 72.82 69.08 63.53 101.63 79.51 80.10 79.42 72.58 69.80 64.63

H0 : Γα = 0 (pval)
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Table 6: Out-of-sample asset pricing performance

This table reports a series of out-of-sample asset pricing performance measures outlined in Section 3. Panel A reports
the performance of the restricted (Γα = 0) IPCA and standard PCA models with K = 1, . . . , 7 latent factors. Panel B
reports the performance of observable factor models including one through six portfolios. The models with observable
factors are estimated using standard static time series regressions (labelled as FFl) or using the IPCA methodology
where the loadings are dynamic by instrumenting with characteristics (labelled as IFFl). The data are sampled daily
from September 1st 2017 to September 1st 2022, where a day is defined with a start time of 00:00:00 UTC. Daily prices
and volume are aggregated across more than 80 different centralised exchanges. Recursive forecasts are carried out by
expanding the window of observations starting from March 2nd 2020.

Panel A: Latent factors

IPCA PCA

IPCA1 IPCA2 IPCA3 IPCA4 IPCA5 IPCA6 IPCA7 PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7

R2
tot (%) 9.25 10.22 10.91 11.49 12.09 12.55 13.02 9.30 11.11 12.31 13.62 14.69 15.74 16.77

R2
pred (%) -0.04 0.28 0.30 0.30 0.30 0.30 0.30 -0.04 -0.03 -0.03 0.01 0.01 0.03 0.03

R2
ts (%) 19.92 20.44 20.24 20.34 20.49 20.59 20.52 21.24 21.34 21.55 21.79 22.01 22.59 22.29

R2
cs (%) 6.22 7.18 7.88 8.47 9.07 9.55 10.04 6.28 8.17 9.36 10.69 11.77 12.77 13.79

R2
tot,x (%) 15.95 30.40 44.92 52.75 55.76 58.73 61.16 13.12 13.50 13.39 15.20 16.14 17.40 17.76

R2
pred,x (%) 0.00 2.89 2.29 2.20 2.28 2.25 2.21 -0.02 0.02 0.06 0.33 0.40 0.47 0.49

R2
ts,x (%) 9.27 23.82 38.61 46.23 49.19 52.03 54.39 6.56 6.97 6.84 8.74 9.69 11.05 11.45

R2
cs,x (%) 10.21 21.15 34.13 41.90 44.76 48.04 50.70 8.86 8.91 8.61 9.36 9.75 10.44 11.08

RPE 101.35 15.39 13.09 10.92 10.16 10.78 10.72 101.99 99.23 98.81 85.34 80.34 74.58 73.97

IC -7.43 -7.50 -7.61 -7.65 -7.59 -7.54 -7.49 -7.39 -7.28 -7.16 -7.06 -6.95 -6.85 -6.74

Panel B: Observable factors

Static loadings Instrumented loadings

FF1 FF2 FF3 FF4 FF5 FF6 FF7 IFF1 IFF2 IFF3 IFF4 IFF5 IFF6 IFF7

R2
tot (%) 7.95 8.26 8.24 8.17 8.14 8.07 7.99 7.88 8.35 8.41 8.38 8.45 8.48 8.50

R2
pred (%) 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.05 0.05 0.07 0.07 0.09

R2
ts (%) 19.36 19.20 19.13 19.09 19.08 18.97 18.82 19.03 18.95 19.06 18.99 19.08 19.12 19.08

R2
cs (%) 5.06 5.35 5.32 5.26 5.20 5.11 5.02 4.99 5.45 5.49 5.47 5.52 5.55 5.57

R2
tot,x (%) 10.82 17.04 18.18 18.03 18.61 19.04 19.13 12.72 19.66 20.99 20.75 21.54 22.01 22.23

R2
pred,x (%) -0.04 0.60 0.61 0.67 0.78 0.83 0.95 -0.09 0.71 0.74 0.80 0.95 0.99 1.14

R2
ts,x (%) 5.06 11.30 12.40 12.23 12.88 13.29 13.38 6.96 13.91 15.21 14.95 15.82 16.27 16.49

R2
cs,x (%) 6.93 11.63 11.73 11.56 11.57 12.37 12.31 7.81 12.82 13.00 12.82 12.75 13.61 13.53

RPE 100.88 72.04 71.66 71.55 68.28 66.07 63.32 100.72 66.24 65.59 65.79 61.99 60.20 57.33
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Table 7: Managed portfolio alphas

This table reports the daily and weekly alphas of managed portfolios based on the restricted (Γα = 0) IPCA model with
K = 4 latent factors (IPCA4), a static latent factor model with seven factors (PCA7), and the observable factor model
including seven portfolios with static (FF7) or instrumented (IFF7) betas. For the conditional IPCA and the observable
factor model with instruments, the portfolio alphas are obtained as time-series averages of the period-by-period model
residuals. For the static observable and latent factor, the portfolio alphas are obtained as intercepts from a time series
regression of portfolio returns on the observable factors. Absolute portfolio alphas with t-statistics greater than 3.0 are
highlighted in green print. The data are sampled daily from September 1st 2017 to September 1st 2022, where a day
is defined with a start time of 00:00:00 UTC. Daily prices and volume are aggregated across more than 80 different
centralised exchanges.

Panel A: Daily returns Panel B: Weekly returns

IPCA4 PCA7 FF7 IFF7 IPCA4 PCA7 FF7 IFF7

α (%) t-stat α (%) t-stat α (%) t-stat α (%) t-stat α (%) t-stat α (%) t-stat α (%) t-stat α (%) t-stat

new add -0.08 -0.82 0.36 3.29 0.44 3.91 0.29 2.93 -1.85 -1.15 -0.17 -0.12 6.36 3.87 6.40 4.04
active add -0.10 -1.12 0.39 3.56 0.45 4.14 0.33 3.36 -1.80 -1.93 0.34 0.25 6.93 4.18 6.99 4.69
$volume 0.03 0.49 1.11 6.66 1.13 6.98 0.85 6.44 -2.92 -3.14 3.32 2.46 11.50 5.14 10.59 4.58
illiq 0.07 0.70 -0.06 -0.45 -0.06 -0.52 -0.14 -1.47 -2.83 -1.40 2.06 1.08 2.79 2.39 2.56 1.90
bid-ask 0.31 3.21 0.31 2.58 0.27 2.31 0.11 1.14 -3.59 -1.78 -0.23 -0.13 2.63 1.50 2.41 1.25
size 0.08 1.00 1.37 12.34 1.17 10.16 0.89 9.87 -0.91 -0.93 6.56 4.13 11.13 4.64 10.20 5.98
bm 0.27 2.39 1.73 14.70 1.56 12.51 1.22 11.54 1.15 0.81 8.02 3.30 12.79 5.28 10.59 5.39
turnover -0.10 -1.30 0.76 4.88 0.89 5.86 0.67 4.78 -2.48 -1.93 3.91 2.16 12.63 3.94 10.57 3.27
dto 0.03 0.25 0.38 3.51 0.37 3.91 0.33 3.39 0.13 0.10 2.34 1.08 3.07 1.36 1.36 0.67
max7 0.23 5.74 1.93 13.56 1.88 15.01 1.84 16.30 -4.06 -2.30 -4.66 -1.60 1.92 0.61 1.34 0.45
max30 -0.02 -0.26 0.38 2.51 0.32 2.34 0.45 4.05 -3.76 -1.08 -1.10 -0.33 7.21 1.73 5.93 1.55
rel to high 0.28 3.18 0.60 6.14 0.52 5.10 0.41 4.08 1.66 1.56 7.06 2.32 5.18 2.51 4.90 2.44
vol shock 30d 0.47 4.02 1.21 9.45 1.19 9.42 1.14 9.54 -0.93 -0.75 0.29 0.14 1.96 0.89 1.71 0.72
vol shock 60d 0.39 3.62 1.10 9.63 1.08 9.17 1.04 9.67 -0.11 -0.09 2.85 1.13 5.23 1.99 4.58 1.72
capm α 0.22 2.88 0.25 2.05 0.17 1.51 0.15 1.36 -2.72 -1.74 -5.46 -1.43 3.55 1.00 2.25 0.63
capm β 0.34 3.61 0.24 2.44 0.25 2.58 0.21 2.27 -0.95 -0.82 2.17 0.71 4.99 2.92 3.08 1.78
rvol 0.13 1.65 0.30 1.90 0.28 2.06 0.15 1.26 -2.90 -1.54 2.80 1.03 11.70 3.08 10.10 2.85
ivol 0.07 0.91 0.28 1.78 0.28 2.07 0.10 0.91 -3.63 -1.88 1.84 0.56 10.24 2.61 8.80 2.36
VaR(5%) 0.21 2.92 0.55 3.96 0.51 4.34 0.30 2.93 -1.97 -1.24 6.38 2.46 12.24 3.67 11.17 3.60
r2 1 -0.28 -3.24 0.61 5.88 0.57 5.20 0.60 6.21 6.85 3.68 27.04 9.16 23.40 8.85 21.31 9.69
r7 1 0.16 2.35 0.51 4.92 0.38 3.86 0.46 4.96
r14 1 0.02 0.34 0.38 3.65 0.22 2.10 0.32 3.26 5.537 1.94 21.44 10.65 15.31 5.19 14.71 5.75
r22 1 0.03 0.43 0.32 2.97 0.24 2.33 0.29 3.06 5.81 3.40 20.01 9.55 14.07 5.42 13.68 5.60
r31 1 0.23 3.10 0.27 2.16 0.16 1.37 0.20 1.86 5.59 3.16 19.40 8.06 12.60 4.86 12.36 4.94
r30 14 -0.32 -3.33 0.35 2.65 0.43 3.12 0.39 3.11 -1.85 -1.23 -2.15 -0.65 5.63 1.70 4.14 1.15
r180 60 0.12 1.08 0.28 2.29 0.37 2.81 0.39 3.35 -0.59 -0.56 0.59 0.23 7.68 2.37 6.64 1.86
std to -0.17 -1.83 0.38 3.60 0.55 5.52 0.48 5.09 -1.52 -1.58 3.60 2.16 10.98 5.05 9.60 4.84
std vol 0.00 -0.04 0.14 1.14 0.18 1.39 0.04 0.44 -3.09 -1.18 1.73 0.53 6.04 1.75 4.86 1.62

Avg. |α| 0.17 0.59 0.57 0.49 2.86 5.83 8.51 7.51
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Table 12: Testing the significance individual characteristics

This table reports p-values from the bootstrap test for the significance of individual characteristics in the restricted
(Γα = 0) IPCA specifications. The IPCAl label identifies an IPCA model with l latent factors. We report the results
for the full sample – from September 1st 2017 to September 1st 2022 –, the sub-sample separation before and after
March 2nd 2020, and the weekly aggregation of the returns. A full description of characteristics and returns is provided
in Section 2.1. The significance of the characteristics is color-coded from red (non-significant) to green (significant at
conventional levels).

Full sample 1st sub-sample 2nd sub-sample Weekly

IPCA2 IPCA3 IPCA4 IPCA5 IPCA6 IPCA3 IPCA4 IPCA3 IPCA4 IPCA2 IPCA3

new add 0.387 0.195 0.399 0.651 0.788 0.152 0.338 0.374 0.403 0.306 0.575
active add 0.236 0.277 0.526 0.687 0.710 0.551 0.636 0.641 0.792 0.316 0.527
$volume 0.105 0.091 0.081 0.161 0.382 0.096 0.002 0.071 0.119 0.048 0.041
illiq 0.000 0.000 0.000 0.000 0.000 0.014 0.002 0.000 0.000 0.042 0.040
bidask 0.059 0.039 0.092 0.202 0.372 0.009 0.061 0.102 0.067 0.034 0.075
size 0.057 0.041 0.117 0.244 0.471 0.026 0.101 0.081 0.116 0.848 0.887
bm 0.172 0.092 0.305 0.446 0.582 0.033 0.156 0.115 0.111 0.444 0.666
turnover 0.275 0.149 0.241 0.271 0.552 0.030 0.017 0.265 0.202 0.494 0.765
dto 0.473 0.641 0.741 0.796 0.947 0.746 0.921 0.533 0.225 0.412 0.774
max7 0.458 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.151 0.362
max30 0.425 0.001 0.001 0.005 0.007 0.009 0.004 0.012 0.009 0.310 0.652
rel to high 0.301 0.241 0.556 0.775 0.932 0.642 0.502 0.682 0.424 0.476 0.792
vol shock 30d 0.255 0.251 0.501 0.705 0.881 0.839 0.505 0.161 0.164 0.078 0.171
vol shock 60d 0.592 0.621 0.192 0.314 0.531 0.229 0.684 0.221 0.188 0.166 0.391
capm α 0.801 0.866 0.985 0.987 0.895 0.911 0.975 0.661 0.964 0.441 0.438
capm β 0.448 0.919 0.991 0.976 0.972 0.958 0.998 0.683 0.954 0.036 0.009
rvol 0.047 0.016 0.074 0.167 0.251 0.271 0.377 0.023 0.019 0.004 0.000
ivol 0.181 0.041 0.028 0.102 0.073 0.072 0.041 0.021 0.028 0.426 0.143
VaR(5%) 0.331 0.189 0.483 0.702 0.855 0.645 0.949 0.124 0.074 0.156 0.348
r2 1 0.281 0.088 0.288 0.605 0.718 0.042 0.010 0.342 0.301
r7 1 0.231 0.197 0.012 0.048 0.081 0.087 0.043 0.179 0.113 0.099 0.032
r14 1 0.247 0.187 0.419 0.422 0.304 0.505 0.711 0.255 0.476 0.639 0.009
r22 1 0.321 0.115 0.173 0.441 0.292 0.553 0.243 0.127 0.124 0.510 0.437
r31 1 0.523 0.921 0.986 0.001 0.091 0.905 0.987 0.864 0.000 0.042 0.035
r30 14 0.143 0.089 0.213 0.000 0.000 0.176 0.603 0.115 0.000 0.389 0.262
r180 60 0.179 0.097 0.186 0.316 0.478 0.212 0.579 0.022 0.003 0.091 0.194
std to 0.232 0.109 0.026 0.002 0.001 0.505 0.821 0.051 0.008 0.712 0.889
std vol 0.249 0.176 0.029 0.049 0.116 0.375 0.317 0.024 0.029 0.182 0.285
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Table 13: IPCA and observable cryptocurrency factors

Panel A of the table reports the test results for the null hypothesis that Γδ = 0 on the instrumented loadings of the
observable risk factors (see Eq.11). We report the test results for both a single equity factor at a time, and jointly from
one (FF1) to seven (FF7) observable risk factors. Panel B reports the total and predictive R2 obtained when adding
the observable cryptocurrency factors to different IPCA specifications. The full sample is from September 1st 2017 to
September 1st 2022.

Panel A: Testing the significance of additional observable factors

Individual testing Joint testing

mkt size r22 1 bm bidask rvol max7 FF1 FF2 FF3 FF4 FF5 FF6 FF7

IPCA1 0.14 0.20 0.32 0.31 0.33 0.06 0.02 0.06 0.00 0.08 0.09 0.00 0.00 0.00
IPCA2 0.56 0.58 0.65 0.57 0.37 0.49 0.02 0.45 0.02 0.09 0.28 0.00 0.00 0.01
IPCA3 0.14 0.11 0.41 0.23 0.21 0.17 0.51 0.04 0.04 0.11 0.22 0.01 0.00 0.78
IPCA4 0.02 0.00 0.19 0.11 0.13 0.04 0.99 0.00 0.14 0.08 0.24 0.11 0.00 0.77
IPCA5 0.02 0.21 0.67 0.07 0.08 0.06 0.98 0.00 0.97 0.32 0.06 0.11 0.00 0.97

Panel B: IPCA explanatory power with the inclusion of additional factors

R2
tot R2

pred

FF0 FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF0 FF1 FF2 FF3 FF4 FF5 FF6 FF7

IPCA1 11.07 11.21 11.54 11.58 11.60 11.63 11.65 11.68 0.00 0.02 0.17 0.17 0.17 0.17 0.17 0.18
IPCA2 12.01 12.15 12.29 12.32 12.34 12.36 12.38 12.40 0.15 0.17 0.18 0.18 0.18 0.17 0.17 0.18
IPCA3 12.74 12.84 12.95 12.97 12.99 13.02 13.03 13.05 0.31 0.31 0.27 0.28 0.28 0.28 0.28 0.26
IPCA4 13.37 13.46 13.56 13.58 13.60 13.62 13.64 13.65 0.32 0.33 0.31 0.31 0.31 0.31 0.31 0.29
IPCA5 13.98 14.07 14.15 14.17 14.18 14.21 14.22 14.23 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32

R2
tot,x R2

pred,x

FF0 FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF0 FF1 FF2 FF3 FF4 FF5 FF6 FF7

IPCA1 16.76 20.06 26.50 27.76 27.88 28.21 28.52 28.88 0.03 0.16 1.53 1.55 1.54 1.55 1.55 1.61
IPCA2 33.72 37.02 41.62 42.08 42.19 42.30 42.24 42.16 0.49 0.76 1.64 1.64 1.64 1.63 1.63 1.65
IPCA3 43.36 46.09 44.81 45.09 45.19 45.41 45.38 45.73 2.01 2.00 1.94 1.94 1.93 1.93 1.93 1.93
IPCA4 51.91 52.56 50.55 50.59 50.68 50.89 50.91 51.21 1.93 1.93 1.79 1.77 1.77 1.77 1.76 1.77
IPCA5 53.57 54.62 53.27 53.15 53.19 53.37 53.39 53.47 1.96 1.95 1.90 1.88 1.88 1.88 1.88 1.87
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Table 14: The additional information content of equity risk factors

Panel A of the table reports the test results for the null hypothesis that Γδ = 0 on the instrumented loadings (see
Eq.11) of the equity risk factors from Fama and French (2012). We report the test results for both a single equity
factor at a time, and jointly from one (F1) to five (F5) equity risk factors. Panel B reports the total and predictive R2

obtained when adding the equity factors to different IPCA specifications. The full sample is from September 1st 2017
to September 1st 2022.

Panel A: Testing the significance of additional observable factors

Individual testing Joint testing

MKT SMB HML RMW CMA F1 F2 F3 F4 F5

IPCA1 0.530 0.480 0.630 0.910 0.690 0.640 0.270 0.720 0.950 0.760
IPCA2 0.430 0.510 0.410 0.920 0.540 0.570 0.350 0.610 0.970 0.820
IPCA3 0.280 0.500 0.280 0.830 0.570 0.450 0.370 0.590 0.950 0.820
IPCA4 0.260 0.390 0.210 0.760 0.510 0.410 0.270 0.350 0.840 0.660
IPCA5 0.290 0.340 0.240 0.680 0.480 0.560 0.250 0.320 0.780 0.490

Panel B: IPCA explanatory power with additional factors

R2
tot R2

pred

F0 F1 F2 F3 F4 F5 F0 F1 F2 F3 F4 F5

IPCA1 12.621 12.601 12.611 12.622 12.630 12.641 0.001 0.013 0.013 0.013 0.013 0.015
IPCA2 13.546 13.527 13.536 13.547 13.555 13.564 0.151 0.142 0.142 0.142 0.143 0.142
IPCA3 14.273 14.255 14.264 14.274 14.282 14.290 0.313 0.331 0.331 0.331 0.332 0.332
IPCA4 14.917 14.899 14.907 14.918 14.925 14.934 0.324 0.338 0.338 0.338 0.338 0.338
IPCA5 15.519 15.502 15.510 15.520 15.527 15.537 0.327 0.339 0.339 0.339 0.339 0.339

R2
tot R2

pred

F0 F1 F2 F3 F4 F5 F0 F1 F2 F3 F4 F5

IPCA1 18.989 18.837 18.921 19.014 19.072 19.101 0.027 0.085 0.085 0.084 0.077 0.082
IPCA2 36.790 36.665 36.736 36.795 36.839 36.916 0.493 0.306 0.310 0.313 0.307 0.310
IPCA3 44.762 44.652 44.750 44.748 44.814 44.846 2.011 2.127 2.132 2.129 2.130 2.130
IPCA4 53.638 53.644 53.681 53.643 53.614 53.610 1.929 2.027 2.031 2.028 2.028 2.027
IPCA5 55.429 55.388 55.442 55.449 55.435 55.431 1.959 2.031 2.034 2.031 2.030 2.031
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Figure 1: A first look at the data

This figure provides a snapshot of the sample used in the main empirical analysis. The left panel compare the market
capitalization of cryptocurrencies in our sample and the total market capitalization. The right panels illustrate the
time-series and cross-sectional dimensions of the panel of the returns.

(a) Coverage of total market cap (b) Sample composition

Figure 2: Alphas of managed portfolios

This figure shows the alphas of managed portfolios based on the set of factors from the restricted (Γα = 0) IPCA model
with K = 4 factors, a static principal component analysis with K = 7 (PCA7), and an instrumented factor model with
K = 7 observable factor portfolios (IFF7). For the IPCA4 and IFF7 models the alphas are computed as the time-series
average of the period-by-period portfolios residuals. For the static PCA7 the alphas are computed as intercepts from
time series regressions of portfolio returns on the latent or observable factors. All portfolios are re-leveraged to yield 5%
daily volatility, consistent with the historical volatility of long-short portfolios. Significant alphas with absolute values
of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas are denoted with unfilled
circles. All reported values are daily and expressed in percentage.
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Figure 3: Alphas of double-sorted portfolios

This figure shows the alphas of 25 portfolios sorted on size vs r21 1, bm or max7 based on the set of factors from the
restricted (Γα = 0) IPCA model with K = 4 factors, a static principal component analysis with K = 7 (PCA7), and an
instrumented factor model with K = 7 observable factor portfolios (IFF7). For the IPCA4 and IFF7 models the alphas
are computed as the time-series average of the period-by-period portfolios residuals. For the static PCA7 the alphas are
computed as intercepts from time series regressions of portfolio returns on the latent or observable factors. All portfolios
are re-leveraged to yield 5% daily volatility, consistent with the historical volatility of long-short portfolios. Significant
alphas with absolute values of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas
are denoted with unfilled circles. All reported values are daily and expressed in percentage.
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Figure 4: Alphas of managed portfolios across sub-samples

This figure shows the alphas of managed portfolios based on the set of factors from the restricted (Γα = 0) IPCA model
with K = 4 factors, a static principal component analysis with K = 7 (PCA7), and an instrumented factor model with
K = 7 observable factor portfolios (IFF7). Panel A shows the results for the first sub-sample from September 1st 2017
to March 1st 2020. Panel B shows the results for the second sub-sample from March 2nd 2020 to September 1st 2022.
For the IPCA4 and IFF7 models the alphas are computed as the time-series average of the period-by-period portfolios
residuals. For the static PCA7 the alphas are computed as intercepts from time series regressions of portfolio returns on
the latent or observable factors. All portfolios are re-leveraged to yield 5% daily volatility, consistent with the historical
volatility of long-short portfolios. Significant alphas with absolute values of t-statistics greater than 2.0 are depicted with
filled diamonds, while insignificant alphas are denoted with unfilled circles. All reported values are daily and expressed
in percentage.
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Panel B: Second sub-sample
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Figure 5: Alphas of managed portfolios based on weekly returns

This figure shows the alphas of managed portfolios for the weekly returns. The alphas are calculated from the restricted
(Γα = 0) IPCA model with K = 4 factors, a static principal component analysis with K = 7 (PCA7), and an instrumented
factor model with K = 7 observable factor portfolios (IFF7). For the IPCA4 and IFF7 models the alphas are computed
as the time-series average of the period-by-period portfolios residuals. For the static PCA7 the alphas are computed
as intercepts from time series regressions of portfolio returns on the latent or observable factors. All portfolios are
re-leveraged to yield 25% weekly volatility, consistent with the historical volatility of long-short portfolios. Significant
alphas with absolute values of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas
are denoted with unfilled circles. All reported values are weekly and expressed in percentage.
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Figure 6: Marginal R2 for IPCA factors

This figure shows the marginal R2 of a set of auxiliary regressions in which the dependent variable is a given latent factor
from an IPCA model, and the independent variables are the estimated managed portfolios for all 28 characteristics. The
figure reports the results for different IPCA specifications with K = 2, 3, 4, 5 latent factors.

(a) IPCA2 (b) IPCA3

(c) IPCA4 (d) IPCA5
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Internet Appendix to

A risk-based explanation of cryptocurrency returns

A Data cleaning

This Appendix describes the procedure related to sourcing, cleaning, and preparing the cryptocurrency database.

The main results of the paper rely on two cryptocurrency databases.

A.1 Original sources

1. The CryptoCompare database is used to download aggregated and exchange level OHLC pricing and

volume cryptocurrency data each day, where a day is defined with a start time of 00:00:00 UTC. We set

tryConversion to ‘true’ and the tsym parameter to ‘USD’ for the regression and aggregated data-based

portfolio sorts. We set tsym to ‘USDT’ and tryConversion to ‘false’ for the exchange-level portfolio sort

robustness results.

2. The IntoTheBlock.com database, which is used to source information on blockchain activity, such as the

number of new addresses and the number of active unique addresses. The day ‘start time’ is also set to

be exactly 00:00:00 UTC.

A.2 Data pre-processing

We only retain cryptocurrency pairs if they have all available data from CryptoCompare and CoinGecko after

merging. We consider a variety of pre-processing steps for a cryptocurrency to be included in the sample:

1. Non-zero price and volume: we exclude any pair that had zero traded volume or a zero price for any

day t.

2. Volume-to-market-capitalization: we compute, for each pair and day t, the ratio of cryptocurrency

traded volume to market capitalization and exclude any pair with a ratio > 1. This is a simple filter to

screen out pairs with ‘erroneous’ or ‘fake’ volume. The measure is conservative - the median of the ratio

is 0.001. This allows us to exclude any data points that are clearly errors.

3. Cryptocurrency type: We utilize cryptocurrency classification data from CoinMarketCap and screen

out all cryptocurrencies which:

− Are linked, are by backed or track the price of gold or any precious metal.

− So-called ‘wrapped’ coins - i.e. WBTC.

− Stablecoins, including those which are centralized (USDT, USDC) and algorithmically stabilized

(DAI, UST) for all fiat currencies.

− Centralized exchange based coins which are derivatives.

4. API issues and suspicious trading activity: As far as suspicious trading activity is concerned,

a series of filter are implemented by CryptoCompare.com to mitigate the effect of suspicious trading

activity: first, trade outliers are automatically excluded from the calculation of trading volume and

therefore from the volume-weighting scheme. For a trade to be considered an outlier, it must deviate

significantly either from the median of the set of exchanges, or from the previous aggregate price.16

16Such deviations can occur for a number of reasons, such as extremely low liquidity on a particular pair, erroneous

https://min-api.cryptocompare.com/
https://www.intotheblock.com
https://coinmarketcap.com/cryptocurrency-category/
https://min-api.cryptocompare.com/


Second, exchanges are reviewed on a regular basis for each given cryptocurrency pair. Constituent

exchanges are excluded if (1) posted prices are too volatile compared to market average of a given pair,

(2) trading has been suspended by the exchange on a given day, (3) verified user or social media reports

false data provision, or (4) malfunctioning of their public API. These steps mitigate the effect of fake

volume and substantially reduces the exposure of the empirical analysis to concerns of misreporting of

trading activity for some exchanges.17

A.3 Final sample

After all filters and checks we are left with an unbalanced panel of 332 cryptocurrency pairs which span the

period from September 1st, 2017 to September 1st, 2022. As shown in Figure 1, the sample cover a fraction of

the total market capitalization in the range of 70% to 95% of the total market value.

B Cryptocurrency characteristics

This section details the construction of variables we use in the main body of the paper and the relevant

references. Unless otherwise specified we use the data sources outlined in Section A.

new add. : The number of unique addresses that appeared for the first time in a transaction of the native coin

in the network. Liu et al. (2021) provide some preliminary evidence on the predictive content of new addresses

for cryptocurrency returns.

active add. : The number of unique addresses that were active in the network either as a sender or receiver.

Only addresses that were active in successful transactions are counted. As highlighted by Pagnotta and Buraschi

(2018) such statistics approximate the network growth and the adoption base for a given cryptocurrency.

bm. : The ”network-to-market value”. This is calculated as the cumulative number of unique addresses over

the current available supply times the current USD price. The current supply is the number of coins or tokens

that have been mined or generated and corresponds to the number that are currently in public and company

hands, which are circulating in the market and/or locked/vested. As suggested in Pagnotta and Buraschi

(2018), the number of unique addresses represents a proxy for the fundamental value of a cryptocurrency. By

dividing such value over the actual market value one can obtain a crude approximation of a valuation ratio.

$volume. : The total dollar amount of native tokens transferred across wallets within and across centralised

exchanges.

size. : The market capitalization is defined as the product of the current available supply times the current

USD price (see, e.g., Liu et al., 2022). The current supply is the number of coins or tokens that have been

mined or generated and corresponds to the number that are currently in public and company hands, which

data from an exchange and the incorrect mapping of a pair in the API.
17Two additional comments are in order. First, notice that “fake” trading typically takes place on crypto-to-crypto

trading on single, possibly small, exchanges which inflates trading volume in order to attract Initial Coin Offering’s
(ICO) listings and/or to manipulate the market (see, e.g., Li et al., 2018). By considering trading against a fiat currency
and an aggregation over a large cross-section of exchanges, the risk that manipulation on a single exchange could affect
the overall market activity is substantially mitigated. Second, the fact that we focus on transactions that take place
on regular trading exchanges should mitigate the concern that market activity is primarily driven by illegal activities.
The latter typically do not take place on registered centralised or decentralised exchanges but through peer-to-peer
transactions on the blockchain (see Foley et al., 2019 and Griffin and Shams, 2020).



are circulating in the market and/or locked/vested. This definition follows the blueprint in Fama and French

(1993).

rvol. : We follow Yang and Zhang (2000) and calculate the daily realized volatility calculated based on daily

OHLC prices.

bid-ask. : The bid-ask spread is the average of two alternative synthetic approximations based on OHLC prices

by Abdi and Ranaldo (2017) and Corwin and Schultz (2012). On a given day and for a given cryptocurrency

pair we calculate both proxies and take the simple average between the two.

illiq. : We follow Amihud (2002) and calculate a price impact (illiquidity) measure as the ratio between the

absolute value of the cumulative intraday returns and the aggregate daily trading volume expressed in $.

capm β. : The market beta is calculated based on a 30-day rolling window. We follow Lewellen and Nagel

(2006) and calculate the beta as the sum of the coefficients of daily returns on the market excess return and

one lag of the market excess returns. The market portfolio is calculated as the value-weighted average of the

asset returns available on each day t.

capm α. : The intercept from a CAPM regression calculated based on a 30-day rolling window (see description

of the capm β).

ivol. : The standard deviation from the residuals from a CAPM regression calculated based on a 30-day

rolling window (see description of the capm β).

turnover. : Turnover is last day’s trading volume in $ over the current supply (see Datar et al., 1998).

The current supply is the number of coins or tokens that have been mined or generated and corresponds

to the number that are currently in public and company hands, which are circulating in the market and/or

locked/vested.

dto. : We follow the logic in Garfinkel (2009) and define de-trended turnover as the ratio of daily volume in

$ to current available supply, minus the daily market turnover and de-trend it by its 180 trading day median.

The daily market turnover is a value-weighed aggregation of the individual assets’ turnover.

std to. : The standard deviation of the residuals from a 30-day rolling window regression of daily turnover

on a constant (see Chordia et al., 2001).

std vol. : The standard deviation of the residuals from a regression of daily trading volume on a constant

(see Chordia et al., 2001).

rel to high. : Closeness to 90-day high is the ratio of the cryptocurrency price at the end of the previous

day and the previous 90-day high. This adapts to a shorter time span the logic in George and Hwang (2004).

max. : Maximum daily return in the previous month following Bali et al. (2011).

vol shock ld. : We follow Llorente et al. (2002) and construct the log deviation of trading volume from its

trend estimated over a rolling period of l = 30, 60 days. The log standard deviation computed over the same

rolling window is used to standardise the estimates due to cross-sectional imbalances (see Babiak et al., 2022).



r2 1. : Short-term reversal as in Jegadeesh (1990)

rl 2. : We follow Liu et al. (2022) and construct a variety of momentum strategies based on the cumulative

return from l = 7, 13, 22, and 31 days before the return prediction to two days before.

r30 14. : We define intermediate momentum as the cumulative returns from 30 days before prediction to 14

days before. This is an adaption on a higher frequency time span from Novy-Marx (2012).

r180 60. : We define long-term reversal is the cumulative return from 180 days before the return prediction

to 60 days before. This is an adaption of De Bondt and Thaler (1985) to a higher frequency setting.

VaR(5%). : The historical Value-at-Risk at 5% calculated based on past 90-day returns.

C Additional results

This section provides a series of additional results. We first look at the performance of an IPCA with and

without restriction on the intercept parameters. Second, we look at the ability of IPCA latent factors extracted

from the cross section of cryptocurrency returns to price 25 equity portfolios sorted on size and book-to-market,

or size and momentum. Third, we look at the correlation between the latent factors extracted from an IPCA

and a static PCA model.

C.1 IPCA performance with and without intercept

Table C1 reports the in-sample asset pricing performance of different IPCA specifications with and without

restrictions on the intercept coefficients Γα. In addition, we report the values of Bai and Ng (2002) information

criteria for each specification of latent factor models as well as the p-values for the test of Γα = 0 for IPCA

based on a wild bootstrap with 10,000 draws.

The results suggest that the explanatory power of the characteristic-driven intercept is limited, that is the

IPCA explains the variation in realised and expected returns solely based on risk compensation (see Kelly et al.,

2019). For instance, the R2
tot from a baseline IPCA4 assuming Γα 6= 0 is equal to 13.5% versus 13.4% when the

matrix of coefficients Γα is restricted to zero. That is, the additional variation that is captured by the intercept

is minimal with respect to the latent factors. The spread in the performance of the single-factor specification

remains negligible for the R2
pred metric. Increasing the number of latent factors does not lead to a widening of

the gap between the restricted and unrestricted IPCA specifications.

The same results hold when we use the set of 28 managed portfolios as test assets. For instance, the

R2
tot,x (R2

pred,x) is 50.5% (2.05%) for the unrestricted IPCA versus a 51.9% (1.93%) for the restricted IPCA.

Interestingly, the relative pricing error is largely in favour of the restricted IPCA specification. For instance,

the RPE from the IPCA4 restricted is 6.7% against a 96% RPE from the equivalent unrestricted IPCA model.

C.2 Pricing equity with IPCA cryptocurrency factors

Figure C1 reports the results from a series of time-series regressions in which each test asset is regressed either

on the Fama-French FF5 model (left panels) or the three latent factors from the crypto IPCA4 (right panels).

The top panels report the average absolute pricing error by using 25 portfolios sorted on size and book-to-

market as test assets. The average absolute pricing error from the FF5 model is 3.4% annualized against a

29.5% obtained from cryptocurrency factors. In addition, for the IPCA3 model the alphas are clustered around



Table C1: Asset pricing performance with and without intercept

This table reports the in-sample asset pricing performance of different IPCA specifications with and without restrictions
on the intercept coefficients Γα. In addition, we report the values of Bai and Ng (2002) information criteria for each
specification of latent factor models as well as the p-values for the test of Γα = 0 for IPCA based on a wild bootstrap
with 10,000 draws. The data are sampled daily from September 1st 2017 to September 1st 2022, where a day is defined
with a start time of 00:00:00 UTC. Daily prices and volume are aggregated across more than 80 different centralised
exchanges.

Γα 6= 0 Γα = 0

IPCA1 IPCA2 IPCA3 IPCA4 IPCA5 IPCA6 IPCA7 IPCA1 IPCA2 IPCA3 IPCA4 IPCA5 IPCA6 IPCA7

R2
tot (%) 11.42 12.29 12.91 13.54 14.06 14.58 15.15 11.07 12.01 12.74 13.37 13.98 14.50 15.08

R2
pred (%) 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.00 0.15 0.31 0.32 0.33 0.33 0.33

R2
ts (%) 18.65 18.94 19.11 19.31 19.41 19.62 19.69 18.61 18.89 19.14 19.39 19.51 19.63 19.69

R2
cs (%) 9.26 10.12 10.80 11.46 12.01 12.57 13.17 8.98 9.85 10.63 11.32 11.96 12.52 13.13

R2
tot,x (%) 18.87 38.77 42.56 50.48 53.99 56.69 58.53 16.76 33.72 43.36 51.91 53.57 56.51 58.38

R2
pred,x (%) 2.11 2.07 2.08 2.05 2.05 2.05 2.04 0.03 0.49 2.01 1.93 1.96 1.95 1.95

R2
ts,x (%) 10.47 31.78 35.74 43.67 47.26 50.14 52.09 8.18 26.42 36.53 45.16 46.91 49.90 51.94

R2
cs,x (%) 13.56 30.13 33.40 41.70 45.38 48.35 50.53 12.34 25.14 34.92 43.25 45.17 48.62 50.45

RPE 100.06 88.54 101.24 95.96 228.89 158.14 171.20 99.48 84.03 6.43 6.66 5.86 4.70 4.91

IC -7.50 -7.66 -7.61 -7.64 -7.59 -7.54 -7.46 -7.47 -7.58 -7.62 -7.67 -7.58 -7.53 -7.46
H0 : Γα = 0 (pval) 0.00 0.00 0.00 0.02 0.07 0.98 0.96

the 45-degree line, which suggests the factors extracted from the panel of cryptocurrency returns do not provide

significant pricing information for equity markets. Results are similar by looking at 25 portfolios sorted on size

and momentum (bottom panels). The FF5 equity factor model produces an average absolute pricing error equal

to 4.9% annualized, against a sixfold higher pricing error of 30.7% obtained when using the IPCA3 factors. Yet,

none of the alphas from the FF5 pricing model is significant.

C.3 IPCA vs PCA factors

Since latent factors can be only identified up to a rotation, we assess the correlations between PCA and IPCA

latent factors by a series of spanning regressions, that is we regress each of the factors from the baseline IPCA3

model on all of the seven factors from the competing PCA7. The choice of these two models is consistent with

the main results represented in the paper. Table C2 shows two interesting results. First, none of the static

principal components perfectly correlates with the IPCA ones: the constant, meaning the unexplained factor

returns, is strongly significant for all the three latent factors. Second, while the multiple correlation coefficients

(
√
R2) for the second IPCA factor shows a strong correlation of 84% with the PCA factors jointly, the first

and third IPCA factors have a smaller multiple correlation of 43% and 63%, respectively. These results suggest

that the factors extracted from a standard principal component analysis factors do not span the IPCA factors.



Figure C1: Alphas of double-sorted equity portfolios

This figure shows the alphas from a time series regression of double-sorted equity portfolios on the set of factors from
either the restricted (Γα = 0) IPCA model with K = 4 factors or the five-factor model of Fama and French (2015). The
left (right) plots illustrate the results for the Fama-French (IPCA) model. The test assets are 25 equity portfolios sorted
on (1) size and book-to-market (Panel A) and (2) size and momentum (Panel B). Significant alphas with absolute values
of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas are denoted with unfilled
circles. All reported values are daily and expressed in percentage.
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Panel B: Size and momentum
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Table C2: IPCA vs PCA spanning regressions

This table reports the results of a number of time-series regressions in which we regress each latent factor from a
restricted (Γα = 0) IPCA model with K = 3 on six latent factors extracted from a static PCA method. We report the
estimates and label with ∗∗∗, ∗∗, ∗ those coefficients significant at a 1%, 5%, and 10% confidence level, based on robust
standard errors. The multiple correlation coefficients in the last row are measured as the square root of R2. The sample
factor returns is daily from September 1st 2017 to September 1st 2022.

IPCA1 IPCA2 IPCA3

α(%) 2.741 *** 0.284 *** 0.422 ***

PCA1 -0.012 *** 0.076 *** -0.041 ***

PCA2 0.010 -0.003 -0.009

PCA3 0.042 *** -0.023 * -0.023 ***

PCA4 0.022 * 0.031 *** -0.034 ***

PCA5 0.003 0.013 *** 0.005

PCA6 0.043 *** -0.016 *** -0.026 ***

PCA7 0.023 * -0.036 -0.046 *

√
R2 0.431 0.841 0.633
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