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Abstract

We investigate the dynamics of returns in cryptocurrency markets through the lens of a small-scale latent factor
model with time-varying factor loadings instrumented by individual cryptocurrency characteristics. We have
three main empirical findings. First, our dynamic factor model excels in providing a risk-based explanation
of daily realised and expected returns across cryptocurrencies, improving over both static latent factor models
and pre-specified portfolios sorted on observable characteristics. Second, we show that expected returns are
primarily driven by liquidity, volatility, and past performance. Third, our model provides evidence of an
increasing, although limited, spill-over of fundamental risk factors between equity and cryptocurrency markets.
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1 Introduction

It is a fundamental tenet of asset pricing that investors should be compensated for their exposure to
sources of systematic risk. This principle is intimately related to the quest for return predictability
and market efficiency. If the return premium associated with a given asset arises because it is funda-
mentally riskier, then we might expect these return premiums to persist in the future. If, however,
the returns premiums do not reflect a compensation for risk, then we might expect the excess returns
to be vanish over time as investors become more aware. This practical view applies to any risky asset
and is often based on the assumption that an accurate identification of common factors in the cross
section of returns can help to provide a risk-based explanation of the performance across assets (see,

e.g., Giglio and Xiu, 2021).

With the rising price and public awareness of Bitcoin, investors have been drawn to cryptocurrency
markets by the promise of significant returns, compared to the paltry yields often on offer from cash,
bonds, and other traditional asset classes. The hyperbolic growth in notional value — with a total
capitalisation of around $1 trillion at the time of writing — has led investors and academics to more
carefully examine the interplay between risks and returns in what is still a relatively unknown market.!
Put it differently, the extent to which cryptocurrency returns are consistent with the exposure to
sources of risk, or if they represent primarily a behavioural phenomena, is yet to be fully understood.
This is partly due to the still relatively unknown nature of the risks that market participants face when
investing in this space. Following the Fama and French (1993) blueprint for equities, Liu et al. (2022)
and Cong et al. (2021b) propose a series of long-short portfolios based on different asset characteristics
— for instance, market capitalization, network growth, or past performances — to rationalise part of

the variation in cryptocurrency returns.

While this certainly simplifies an empirical analysis, the assumption that risks can be unequivo-
cally mapped by observable factors requires a previous complete understanding of the cross section
of average cryptocurrency returns. However, this is likely a partial understanding at best, and the
ubiquitous presumption that risk factors can actually be observed with negligible measurement error
may not necessarily hold in practice (see, e.g., Giglio and Xiu, 2021). Furthermore, standard pricing

models based on either latent or observable common factors typically assume that loadings are con-

1For comparison, as of September 2022, the total market capitalization of the Italian, Spanish, French and German
equity markets was approximately $0.7, $1, $2.4, and $1.9 trillion, respectively.



stant over time. As a result, they may be ill-suited for estimating a stochastic discount factor which
may not necessarily be constant over time, particularly when the asset class under investigation is
plagued by extreme volatility and structural instabilities due to widespread market fragmentation

(see, e.g., Makarov and Schoar, 2020, 2021).

In this paper, we build upon Kelly et al. (2019, 2022) and implement an instrumented principal
components analysis (IPCA); a conditional latent factor model in which the factor loadings are driven
by a set of observable individual asset characteristics. These individual characteristics capture key
risk features, including trading frictions, liquidity, volatility, past performances, and growth/adoption

as proxied by on-chain network activity.

Our modeling framework has a few features that differ from frameworks used in the prior literature
on cryptocurrency markets. To begin, long-short portfolios in the cryptocurrency space do not nec-
essarily represent actual investment opportunities, because they hardly incorporate transaction costs
and trading restrictions (see, e.g., Makarov and Schoar, 2020). Discrepancies between the construc-
tion of factor portfolios and their actual implementation could bias inferences about a beta/expected
return model (see, e.g., Huij and Verbeek, 2009). By acknowledging that the common factors are un-
observed, our approach searches for the most apt factors and avoids theoretical inconsistencies from

fixing factors a priori and treating them as though they are perfectly observed.

In addition, IPCA implies that the factor betas are time varying and depend on a potentially large
set of individual asset characteristics. On the one hand, this allows a researcher to discipline the
estimates of the stochastic discount factor in a way that is coherent with theoretical underpinnings;
that is, individual asset characteristics should provide reliable information to understand the dynamics
of expected returns (see Daniel and Titman, 1998). On the other hand, the instrumented betas can
help to consistently recover the unknown factor structure of the returns while at the same time can

accommodate dramatic fluctuations in the pricing kernel (see, e.g., Cochrane, 2011; Kelly et al., 2019).

As a by-product of the estimation framework, the IPCA produces a set of managed portfolios,
one for each characteristic, that can be used to test the pricing performance of different asset pricing
models. This allows one to abstract from an arbitrary choice of a single or a pair of characteristics to
construct univariate or double-sorted portfolios as test assets. This level of abstraction and the explicit
mapping between asset characteristics, loadings, and associated latent factors may be particularly

suitable within the context of cryptocurrency markets, where the nature of the stochastic discount



factor is yet arguably unknown. Put it differently, the IPCA efficiently aggregates a large set of asset
characteristics that potentially could all be informative, given the relatively unexplored nature of the
cryptocurrency market, and then allow the data to dictate if and how these characteristics can provide

a reliable risk-based explanation of cryptocurrency returns.

Empirically, we investigate the returns dynamics of a large cross section of cryptocurrency pairs
traded daily against the U.S. Dollar from September 1st, 2017 to September 1st, 2022 on more
than 80 centralised exchanges. For each pair, we construct a set of 28 characteristics, which can be
broadly categorized as on-chain activity, trading frictions, and past performances. On-chain activity
contains measures of network growth, value, and adoption (see, e.g., Pagnotta and Buraschi, 2018;
Cong et al., 2021b). We add a residual category dubbed as “other”, that contains the equivalent
of a CAPM alpha and a simple non-parametric downside risk measure. Our analysis shows that,
by leveraging information in observable cryptocurrency characteristics to estimate latent factors and
the corresponding dynamic loadings, researchers can better understand the risk-reward trade-off in
cryptocurrency markets compared to the insights gained from traditional static latent factor models

and long-short observable portfolios.

Our main contribution is fourfold: first, we show that a parsimonious IPCA model with few latent
factors can provide a more accurate risk-based explanation of both the realised returns variation
— i.e., systematic risks — and the difference in average returns — i.e., risk compensation —, when
compared against standard latent or observable risk factors. For instance, a four-factor IPCA model
(henceforth TPCA4) produces an out-of-sample total R? for individual cryptocurrency daily returns of
11.5%. For comparison, a benchmark factor pricing model with seven observable factors (henceforth
FF7) — market, size, momentum, volatility, liquidity, past maximum daily returns, and network-to-
market value — produces an out-of-sample Rt20tal of 8%. In addition, the IPCA4 provides a more
accurate description of risk compensation in cryptocurrency markets, as highlighted by a positive
out-of-sample predictive R? equal to 0.30%, against 0.03% and 0.02% obtained from a static principal

component regression with seven latent factors (henceforth PCA7) or the FF7 model, respectively.

The TPCA’s success in explaining jointly the variation in both realised and expected returns
come solely from the exposure to common risk factors and does not depend on mispricing effects,

i.e., the intercept coefficients are restricted to zero for all assets. Yet, the gap in favour of the
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IPCA4 increases when characteristic-sorted portfolios are used as test assets: the out-of-sample R}, ., .



(R]% ) obtained from the IPCA4 model is 52% (1.9%), whereas the total and predictive out-of-sample
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performance of the benchmark (FF7) model is 19% (0.95%). The performance gap in favour of the
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IPCA4 with respect to PCA7 also increases for managed portfolios, with the latter producing an R

(Rfmd@) equal to 17.7% (0.5%) out of sample, daily.

The second main result pertains to a set of alternative dimensions through which the pricing

performance of the IPCA is compared to both latent and observable risk factors model. We consider
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the time series R, the cross-sectional RZ,, and the “relative pricing error” (RPE). The latter is
defined as the magnitude of the model’s unexplained average returns, i.e., the ratio between the
alphas and the historical average returns. When a model does not explain any systematic part of the
returns variation, the RPFE is at, or above, 100%. The results show that the ability of the IPCA4
model to explain both the time-series and the cross-sectional variation of the returns is substantially
higher than that of the observable FF7 model. For instance, the out-of-sample time-series RZ, of the
IPCA4 is 20.4% (46%) for individual assets (managed portfolios); this compares to a 18.8% (5.02%)
obtained from the FF7 model. In addition, while the IPCA4 delivers an out-of-sample RPFE of 10.9%,
the competing FF7 (PCA7) model generate a much higher relative pricing error of 63% (74%). This

suggests that, as far as the pricing performance is concerned, the IPCA seems to provide a more

accurate risk-based explanation of both the realised and expected cryptocurrency returns variation.

As highlighted by Kelly et al. (2019), the dual implication of IPCA’s superior performance is
that the IPCA latent factors are more consistent with mean-variance efficiency. We show that the
four-factor IPCA specification achieves an ex-ante Sharpe ratio of 0.83, versus 0.18 (0.40) for the
benchmark FF7 (PCA7) model. Finally, the superior asset pricing performance of the IPCA com-
pared to conventional models is confirmed by looking at the unconditional average absolute alphas
across managed portfolios: the average absolute alphas of the 28 portfolios sorted on different asset
characteristics is 0.17% daily for the IPCA4 compared to a 0.59% from the PCA7 and 0.57% for the

FF7.

Our third main result relates to the dynamics of the IPCA factor loadings and the factors inter-
pretation. We build upon Kelly et al. (2019) and Kelly et al. (2022), and test the significance of
the characteristics used to discipline the betas through a semi-parametric bootstrap procedure. Our
testing results show that, based on the baseline TPCA4 model, the factor loadings, and therefore the

conditional expected returns, are primarily driven by a handful of individual asset characteristics in-



cluding liquidity, past performances, and volatility. The fact that only a small set of individual asset
characteristics (7 of 28) is significant, coupled with the zero-alpha restriction in the baseline IPCA,

suggests that these characteristics do not represent spurious compensation in the absence of risks.

In addition, our main results show that the latent IPCA factors are not spanned by observable
long-short portfolios. This is directly tested both by leveraging the flexibility of the IPCA estimation
methodology, and by a series of factor spanning regressions. A series of individual regressions of each
latent factor on managed portfolios provides some interesting interpretations of the IPCA model. For
instance, the first factor primarily correlates with the market beta and network growth measures,
the second factor with the maximum daily return in the previous week, the third factor with trading
volume, size and turnover, and the fourth factor is a combination of past performance measures,
liquidity and volatility. This suggests that a combination of trading frictions and network growth
might be the key determinant of risk premiums within the cryptocurrency space (see, e.g., Pagnotta

and Buraschi, 2018; Cong et al., 2021b; Babiak et al., 2022).

The final main result of the paper relates to the alleged segmentation between cryptocurrency and
traditional equity markets (see, e.g., Liu and Tsyvinski, 2021). The conventional wisdom posits that
although cryptocurrency and equity markets are fundamentally segmented, the correlation between
the two steadily increased since the outbreak of the Covid 19 pandemic. In this respect, our assess-
ment asks: how relevant is the pricing information contained in standard equity portfolios for the
cross section of cryptocurrency returns and vice-versa? The IPCA framework is particularly suitable
because it allows us to directly test for the incremental explanatory power of equity risk factors while
at the same time being agnostic on the nature of the common cryptocurrency factors. This allows us
to understand the issue of fundamental correlations between cryptocurrency and equity risk factors

in a self-contained framework.

The results suggest that once we control for IPCA latent factors, the information content of equity
risk factors to explain the variation in realised and expected cryptocurrency returns is negligible.
When we augment the IPCA fit on the cross section of individual cryptocurrency returns with the
Fama and French (2015) five equity risk factors, the total and predictive R? remain virtually the same.
In addition, a semi-parametric bootstrap test shows that none of the equity risk factors considered
produce a statistical significant effect on the dynamics of realised or expected cryptocurrency returns,

once we condition for the IPCA factors. Nevertheless, a series of factor spanning regressions shows



that, albeit small, there is some correlation between the IPCA cryptocurrency factors and the Fama-
French equity factors. For instance, the correlation between the first IPCA factor and the excess

return on the equity market is highly significant and increased after March 2020.

Overall, the empirical results suggest that market segmentation may still potentially represent
an impediment to cross-asset fundamental spillovers between equity and cryptocurrencies, compared
to other asset classes such as bond (see, e.g., Kelly et al., 2022), foreign exchange and commodities
(Asness et al., 2013). However, the presence of a moderate correlation between markets, as shown
for instance by the first IPCA latent factor and the equity market portfolio, potentially suggests that
investors’ hopes on the “diversification” benefits of cryptocurrencies may have been ill-posed (see,

e.g., Baek and Elbeck, 2015; Yermack, 2015; Biais et al., 2020).

The strong performance of the IPCA compared to traditional latent and observable factor models
holds across different sub-samples, such as by slicing the cross section by quartiles on size, liquidity,
and network growth, including when we divide the sample into pre- and post-COVID 19 outbreak,
and using less granular weekly returns. The latter helps us to better understand the properties of
the IPCA when the ratio between the number of assets and the number of observations increases,
and provides some useful comparisons with the existing literature. In addition to Liu et al. (2022),
who study the variation in weekly cryptocurrency returns in the pre-Covid period, based on a series
of observable risk factors, our work is related to a growing literature that aims at understanding the
trade-off between risks and rewards within the context of cryptocurrency markets, including Cong
et al. (2021b), Makarov and Schoar (2020), Dobrynskaya (2021), Makarov and Schoar (2021) and
Babiak et al. (2022), among others. It is also related to a large literature investigating how individual
characteristics can be used to predict risk premiums (including Freyberger et al., 2020; Biichner and
Kelly, 2022; Kelly et al., 2022, among others), and to a large literature studying the pricing dynamics
and investment properties of digital assets (for example, Weber, 2016; Biais et al., 2020; Chiu and
Koeppl, 2017; Cong and He, 2019; Cong et al., 2021a,c; Sockin and Xiong, 2020; Schilling and Uhlig,

2019; Abadi and Brunnermeier, 2018; Routledge and Zetlin-Jones, 2021).



2 Research design

2.1 Data description

We collect OHLC prices and trading volume from CryptoCompare.com and the data on on-chain
activity from IntoTheBlock.com. The data are sampled daily from June 26th, 2014 to September 1st,
2022, with a day defined at a start time of 00:00:00 UTC. Daily prices and volume are aggregated
across more than 80 different centralised exchanges which are deemed to provide a sufficiently reliable
trading platform by CryptoCompare.? The aggregation across different exchanges is volume-weighted,
that is, prices and trading volume are aggregated based on the exchange-specific trading activity. This
procedure implies that larger and more established exchanges tend to have relatively more weight in
the aggregation of the price and volume of a given pair compared to the weight of smaller/peripheral
exchanges. All cryptocurrency pairs in the sample use USD as the quote currency, that is, USD
represents the “domestic” currency in the sample (see, e.g., Liu et al., 2022). We only retain cryp-
tocurrency pairs if they have all available data from CryptoCompare.com and IntoTheBlock.com after

merging.

We introduce a variety of filters to mitigate the effect of erratic or suspicious trading activity.
First, we exclude pairs that had zero traded volume or a zero price for any day ¢t. Second, for
each pair and day ¢ we compute the ratio of traded volume to market capitalization and exclude
pairs with a ratio greater than 1. This is a simple filter to screen out pairs which are potentially
subject to “fake” volume or “wash trading” in a given day, meaning trading activity which is largely
decoupled from the actual market value of a cryptocurrency on a specific date. The threshold is
conservative because the median of the ratio is 0.01. Third, we screen out (1) all cryptocurrencies
that are backed by or that track the price of gold or any precious metal, (2) so-called “wrapped”
coins, e.g., Wrapped Bitcoin (WBTC), since they represent copies of existing tokens, (3) stablecoins,
including those that are centralized (e.g., USDT, USDC) and algorithmically stabilized (e.g., DAI,
UST) for all fiat currencies, and (4) coins that are synthetic derivatives, e.g., stETH, stSOL, as they
track the value of an existing cryptocurrency. The screening is based on the classification provided

by CoinMarketCap.com. Appendix A provides more details on the additional filters implemented in

The exchanges that we include in the aggregation are the ones ranked from AA to B by
CryptoCompare.com. The precise ranking of all exchanges appears on the company website at
https://www.cryptocompare.com/exchanges/ /overview.
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https://min-api.cryptocompare.com/
https://www.cryptocompare.com/exchanges/##/overview

the aggregation step by CryptoCompare.com to mitigate the impact of fraudulent trading activity
and/or malfunctioning API for individual exchanges. After applying all filters, we are left with an

unbalanced panel of 395 cryptocurrency pairs.

Figure 1 overviews the data. The left panels compare the aggregated capitalization of cryptocur-
rencies in our sample with the total market capitalization. Two observations are noteworthy. First,
the figure shows that our dataset covers a large fraction of the total market, from as much as 95%
from the beginning of the sample until late 2019 and a still almost 70% at the end of the period under
consideration. Although the cross section in our sample is smaller than the number of cryptocurren-
cies currently available — at the time of writing there are more than 19,000 different tokens according

to CoinMarketCap.com — coverage of the market value is quite substantial.?

Second, there is considerable time variation in the market value of cryptocurrencies in our dataset.
For instance, the sample includes the ICO mania of late 2017, the so-called “crypto-winter” of 2018-
2019, the COVID-19 crash in March 2020 — which resulted in a 40% loss in Bitcoin (BTC) and
even greater losses in the alternative coins —, and the subsequent boom and bust cycle that begun
late 2021 and ended with the spark of the Ukraine war in early 2022. In addition, our sample
includes major regulatory and institutional changes, including the ban by the Chinese government
on crypto exchanges, the introduction of tradable Bitcoin and Ethereum futures contracts on the
Chicago Mercantile Exchange (CME), the launch of the first traded Bitcoin Futures ETFs in October
2021, and the built-up of the transition of Ethereum from proof-of-work to a proof-of-stake protocol.

In sum, our sample covers a variety of regulatory events and market scenarios.*

The right panels in Figure 1 report a snapshot of the time-series and cross-sectional dimensions of
our panel of assets. A pair is included in the sample if it has been traded for at least 365 days, though
the asset may not necessarily be available at the end of the period. As a result, our panel eliminates
short-lived coins, which potentially represent scams, but includes failed coins with a relatively longer
history of transactions. This helps to mitigate potential survivorship bias, and results in an unbalanced
panel of cryptocurrencies. As shown in the right panels in Figure 1, there is a wide range for the length
of the individual time series, with an upper bound of 3,000 observations. Also, the panels illustrate

that the number of available cryptocurrencies is less than 50 before September 2017, rapidly increases

3Note that this concentration is a common feature of cryptocurrency markets (see, e.g., Babiak et al., 2022).

4Our sample of almost 400 pairs is rather consistent with the number of assets commonly listed on major exchanges.
For instance, at the time of writing, Binance.com — the largest centralised exchange by trading volume — is listing 394
tokens as per Coinmarketcap.com.
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to 395 towards the end of 2019, and then slightly decreases to almost 300 by the end of the sample.
Although the data is available from 2014, our empirical analysis uses the panel of cryptocurrency
returns starting from September 1st, 2017 due to the limited number of available assets before this
date. Indeed, including the data before September 1st, 2017 could be problematic for the estimation
of the IPCA model, as the number of characteristic-managed portfolios approaches the number of

cryptocurrencies.

Nevertheless, we evaluate the impact of the size of the cross section on the main empirical results
by performing three robustness checks. First, we replicate the empirical analysis for the sub-samples
before and after the COVID-19 outbreak. This exercise demonstrates the performance of the IPCA
model estimated based on a different sample size. It further challenges the IPCA framework in the
environment with large price swings as observed in the cryptocurrency markets since early 2021.
Second, we recursively re-estimate the IPCA model on an expanding window basis, starting from the
initial 50% of the data. In this case, we evaluate the performance specifically in the second half and
further assess the out-of-sample asset pricing properties of the IPCA fit. Third, we slice the cross
section of assets in different quartiles based on size, liquidity and on-chain activity and shows that
the IPCA systematically outperform the other competing factor analytics. Overall, the results of our
robustness checks refute the concerns related to the size of the cross section, sampling issues, or the

estimation procedure.

2.1.1 Characteristics. Table 1 provides an overview of 28 characteristics we use as instruments
in the IPCA methodology. We group them into four categories: on-chain activity measures, including
new addresses (new add) and network-to-market value (bm); trading frictions, such as the average
daily bid-ask spread (bidask) and idiosyncratic volatility (ivol); past returns, such as momentum
(r22_1) and short term reversal (r2-1); and others, such as the CAPM alpha (capm «) and the daily
historical Value-at-Risk at 5% (VaR(5%)). We follow Freyberger et al. (2020) and Liu et al. (2022) in
the classification of characteristics. Appendix B contains a detailed description of the characteristics,

the construction, and the relevant references.

Table 2 reports summary statistics for various characteristics and return predictors. For each
variable, we report the cross-sectional mean, median, standard deviation, and relevant percentiles
of the cross-sectional distribution of the time-series averages. Notably, the distribution of most av-

erage characteristics is positively skewed. This is most evident for new addresses (new add) and



active addresses (active add). Similarly, trading volume ($volume), market capitalization (size),
and Amihud (2002) ratios (illiq) are highly positively skewed. This is due to a handful of large
cryptocurrencies - Bitcoin and Ethereum, among others - that are more heavily traded and more

liquid than the average cryptocurrency pair.

2.2 Observable factor portfolios

We first construct our own cryptocurrency market factor (mkt) as a the returns in excess of the risk-
free rate on the value-weighted portfolio of the cryptocurrency pairs in our data. This produces a
proxy for market risk that is best positioned to coincide with the variation in our cryptocurrency
return panel. The risk-free rate is approximated as the daily one-month Treasury bill rate. The
market factor is motivated by a relatively high concentration of cryptocurrency markets (see market

capitalization in Table 2).

In addition to the market risk factor, we consider a variety of long-short portfolios following the
existing empirical asset pricing literature (see, e.g., Liu et al., 2022). We construct a comprehensive list
of long-short strategies based on size, momentum, volatility, liquidity, reversal, and on-chain activity.
Some of these factors have been shown to capture a significant amount of the variation in realised and
expected cryptocurrency returns (see, e.g., Brauneis et al., 2021; Cong et al., 2021b; Leirvik, 2021),

while some others have been adapted from the equity literature (see, e.g., Fu, 2009; Nagel, 2012).

Our construction of observable factors follows a standard approach. Specifically, for each day
we sort individual cryptocurrencies into quintiles based on the value of a given characteristic. We
then combine the cryptocurrencies within each quintile into a value-weighted portfolio based on the
current relative market capitalization of each pairs. The next day we track the return on each quintile
portfolios. Notice for the momentum factors we consider a one day skipping period after the portfolio

formation to mitigate the bid-ask bounce or short-term reversal effects (see, e.g., Nagel, 2012).

We calculate the returns on a long-short strategy as the spread between the returns of the fifth and
first quintile portfolios, or the opposite, depending on the risk factor we investigate. Furthermore,
because the market capitalization is highly skewed in few pairs (see Table 2), we apply a 40% restriction
on the weight of a given pair within a given quintile portfolio (see, e.g., Jensen et al., 2022). The choice
of 40% is inconsequential. However, it produces more realistic capital allocation within each portfolio,

which could otherwise be almost uniquely concentrated in a single asset without considering the weight
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cap. Alternatively, we could employ an equal-weighted portfolio allocation scheme for each quintile.
However, given the low liquidity of smaller cryptocurrencies, some of which are akin to microcap
firms, this would mechanically inflate the returns of each long-short strategy (see, e.g., Babiak et al.,

2022).5

We first construct a size factor by sorting digital assets based on their log market capitalization.
We calculate the market capitalization of each pair as the current supply of coins times their current
market price expressed in USD. The current supply is the number of coins or tokens that have been
mined or generated and corresponds to the number that are currently in public and company hands,
which are circulating in the market and/or locked/vested. We construct the risk factor as a long-
short portfolio that goes long (short) on small (large) assets. We assume that shorting occurs on the
margin at a 1x leverage ratio. As a result, each time the portfolio is rebalanced, one can invest only
a fraction of wealth in new short positions.® Table 3 reports the average return and volatility of the

size portfolio; consistent with Liu et al. (2022) the average returns on the size factor are negative.

In addition to market and size, we consider two alternative liquidity factors. First, for each trading
day, we sort individual cryptocurrencies into quintile portfolios based on the value of their Amihud
(2002) ratio. We calculate this as the ratio between the absolute daily return and the average daily
trading volume in $mln. We construct the i11iq risk factor as a long-short portfolio which goes long
(short) on less liquid (more liquid) assets. We consider an alternative liquidity factor by replacing the
Amihud (2002) ratio with the synthetic bid-ask spread measures as proposed by Corwin and Schultz
(2012) and Abdi and Ranaldo (2017). We sort each asset in quintile based on their average bid-ask
spread (see, e.g., Babiak et al., 2022), and construct the bidask risk factor by taking a long (short)
position on value-weighted portfolios with the highest (lowest) bid-ask spread. Table 3 shows the
sample performance of both portfolios. Interestingly, both risk factors produce large and negative
Sharpe and Sortino ratios. Differently from the market portfolio, the i1liq risk factor generates a
positive returns skewness. This is not entirely unexpected from a long-short portfolio strategy vs

long-only market allocation.

°In a set of unreported results we show that although the performance of equally-weighted portfolios grows stronger,
the explanatory power of observable risk factors remain subpar the IPCA.

S Although quite complicated to implement, the equivalent of a short sale can be created via margin trading on major
exchanges, including Binance, Poloniex, and Bitfinex. In practice, these exchanges offer the possibility to borrow a
given crypto at the current market price, and to sell it, and then to buy it back later to cover the investor’s position.
Another interpretation one could give to our long-short portfolio is a weighting scheme relative to a benchmark, a value-
weighted market portfolio. In this case, a long (short) position could be interpreted in relative terms as overweighting
(underweighting) some cryptocurrency pair with respect to its market weight (see, e.g., Liu et al., 2022).
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We also consider two alternative long-short portfolios based on either realised or idiosyncratic
volatility. We compute the realised volatility factor (rvol) using the estimator proposed by Yang
and Zhang (2000) based on OHLC daily prices with a rolling period of 30 days. We then sort
cryptocurrency pairs into value-weighted quintile portfolios from low to high realized volatility. A
short position is initiated in low-volatility pairs, whereas a long position is taken in high-volatility
pairs. In addition, we follow Ang et al. (2006) and measure the idiosyncratic volatility for each
cryptocurrency as the standard deviation of the residuals from a 30-day rolling window regression of
the individual returns onto the market portfolio. The ivol strategy returns are the return differential
between quintile portfolios of the lowest and highest idiosyncratic volatility. Table 3 shows that
sorting pairs either by their realized or idiosyncratic volatility generates a negative and significant
average return, with a Sharpe ratio comparable to both liquidity factors. This negative performance

is consistent with previous literature (see, e.g., Liu et al., 2022).

Next, we consider a variety of alternative specifications for past performance. First, we consider
a simple short-term reversal strategy (r2-1) as in Nagel (2012); Babiak et al. (2022). Then, we
construct several cross-sectional momentum factors as introduced by Jegadeesh and Titman (2001).
We consider three different “look-back” periods of [ = 7,14, 22, 31 trading days. We allocate each pair
into a given quintile based on its cumulative log return over the previous I-days. We then construct a
corresponding momentum strategy as the long-short portfolio that goes long (short) on past winner
(loser) assets. Table 3 shows that, at least unconditionally, all momentum strategies produce positive
Sharpe ratios, with an average value of 0.02 daily (0.4 annualised). In addition to momentum we also
consider long-short portfolios constructed based on the maximum daily returns over the last [ = 7,30
days. We construct quintile portfolios from the lowest to highest maximum daily returns over the past
[ days. We thus construct a long-short strategy (maxl) by taking a long position on the highest max
and a short position on the lowest max portfolio. Consistent with the existing literature on equity

markets both max! portfolios produce quite large negative Sharpe ratios (see, e.g., Bali et al., 2011).

The last three long-short portfolio strategies we consider focus on blockchain network activity.
First, we consider an on-chain ”value” strategy as inspired by Pagnotta and Buraschi (2018). We
construct this “value” proxy by using the network-to-market value ratio (bm): the cumulative number
of unique addresses over the current available supply, times the current USD price. As Pagnotta and

Buraschi (2018) suggest, the intrinsic value of a cryptocurrency/token could be directly dependent on
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the growth of the network, which can be proxied by the cumulative number of blockchain addresses
that actively transact in a native coin. By dividing the cumulative number of active addresses to the
market capitalization, one can approximate the extent of market over- or under-valuation of a given

token with respect to its network dispersion.

Clearly, in the absence of cash flows and a clear definition of book value, the bm measure represents
an approximation, at best. Therefore, in addition to network-to-market value ratio, we follow Cong
et al. (2021b) and also construct long-short portfolios by sorting assets based on the number of unique
addresses that appeared for the first time in a transaction of the native coin in the network, or based
on the number of unique addresses that were active on a given day in the network either as a sender
or a receiver (see Appendix B). Table 3 shows that all risk factors based on on-chain activity produce

a positive Sharpe ratio which is in line with the market portfolio.

2.3 Instrumented principal components analysis

A factor pricing approach is the most common empirical analysis to evaluating the trade-off between
risks and rewards in financial markets. It assumes that the information content in the cross section
of individual asset or portfolio returns can by summarised by a small set of factors. This approach
does not depend on the asset class under investigation, and is grounded on fundamental asset pricing
theory. Assuming the no-arbitrage condition holds, a stochastic discount factor m;41 exists and the
Euler equation Ej [my417i4+1] = 0 holds for any excess return r; ;1. Consequently, the conditional

expected return satisfies

(1)

Covy (myy1,7; Var; (m
B [rip] = t (o1, i) <— t( t+1)>

Vare (mey1) Ey [mig]

Bit At

in which 3;; is conditional exposure of asset i at time t to systematic risk factors and A; is the
time-varying price of risks associated with factors. Assuming myy1 is linear in factors f;11, the cross

section of excess returns satisfies a linear factor model:

Tig+1 = Qg + Bitfre1 + €1, (2)

where Ey [€;141] =0, E¢ [frr1€i041) =0, A\t = By [fi+1] and a5+ = 0 holds for all 4 and t.
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Notably, the nature of factors f;11 and the dynamics of intercepts «;; and loadings 3;; are left
unspecified by the asset pricing theory. In this paper, we jointly estimate o, 8;; and fi41 via the
instrumented principal components analysis (IPCA) method developed by Kelly et al. (2019) and
used more recently by Biichner and Kelly (2022) and Kelly et al. (2022) for modelling option and
corporate bond returns. The IPCA framework assumes that risk factors are latent and extracted from
the cross section of test assets, whereas intercepts and loadings are time-varying and linear in asset

characteristics:
! !
QG ¢ = Zi,traa 5i,t = Zi,trﬁ, (3)

where z;; denotes an L x 1 vector of (cryptocurrency) characteristics. The mapping between char-
acteristics and dynamic intercepts and factor loadings is linear and is determined by the matrices
I' = [I'4,T'g]. The main hypothesis throughout this paper is that the coefficients of the intercept
I’ to be zero for all assets. This implies that the variation in the realised and expected returns is
consistent with a beta/expected return model, rather than being a reflection of compensation without
risk. By restricting I',, = 0, the state-space in Eq.(2)-(3) is estimated via an alternating least squares

approach, which iterates the first order conditions of I'g and fi11
> T N
Fri1 = (rﬂztztrﬁ) B Zr, Wt (4)

and

T—1 -1 g ,
vec (fg) = (Z AVARS ﬁ+1,}§l+1) <Z [Zt ® ﬁ+1:| ’I"tJrl) ) (5)

t=1 t=1

where Z; and ry4+1 denote the stacked arrays of instruments and returns, respectively. In the main
results we also estimate an unrestricted model with I'y, # 0 and then test for the null hypothesis that
I'n, = 0 via non-parametric bootstrap. The extension of the alternating least squares approach for
the unrestricted model becomes consequential by simply adding a constant to the vector of factors.
One comment is in order. Table 2 shows that a significant fraction of characteristics have a rather
skewed cross-sectional distribution. To mitigate the impact of skewed observations on the estimation
procedure, we build upon Kelly et al. (2019) and cross-sectionally rank, demean, and scale the char-

acteristics to exist in the [—1, 1] interval. This places characteristics on the same investment scale as
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standard long-short portfolios, and at the same time mitigate the impact of outlying observations so

that the estimate of I' is directly comparable across characteristics.

2.3.1 DMotivating evidence for IPCA. A natural starting point to understand the value of
instrumenting the conditional betas within an otherwise standard factor pricing model is a panel
predictive regression of cryptocurrency returns on the same set of characteristics used to estimate the
IPCA. The left and middle panels of Table 4 reports two different sets of results; a simple pooled
OLS where individual fixed effects have been discarded, and a panel regression with individual fixed
effects. Notice that, to retain some sort of direct mapping with the IPCA estimation, we have cross-
sectionally re-scaled the characteristics to be in the [—1, 1] interval. We find that a moderately large
set of characteristics is indeed significant, although the in-sample predictive R? is essentially zero.
Even when we add fixed effects, the fit does not significantly improve. In other words, although
there is evidence that characteristics and future returns tend to correlate, a standard panel predictive

regression would not excel in explaining the dynamics of realised returns.

The right panel of Table 4 expands the evidence on the raw returns and investigates the extent
to which cryptocurrency characteristics predict market betas. Instead of using the one-day ahead
returns as the target variable in the panel predictive regression, we plug in a measure of the future
realised market betas, calculated based on a 30-day rolling window regression. To avoid overlapping
observations, we consider the 30-day market beta at time ¢+ 30 in a predictive regression of the form:

ﬂfw = vz, + constant + error.

The results shows that characteristics do indeed significantly predict market betas with a panel R?
of 1.9%. Compared to the 0.06% of the pooled OLS on the raw returns, the individual characteristics
have a substantially higher predictive content when it comes to individual risk exposure vis-a-vis
returns. Although this seems relatively low, recall that there is a fair degree of noisiness in the market
betas estimated with only 30 days of realised returns. In addition, several of the characteristics are
significant. Among the strongest predictors, we can find the $volume and i11iq measures, the reversal
factors (max and rel to_high), idiosyncratic volatility (vol), and turnover (turnover), each of which
with highly significant regression coefficients — coefficients which are directly comparable given the

characteristics have been cross-sectionally ranked and standardised.

Taken together, the results in Table 4 suggest that cryptocurrency characteristics offer some pre-

dictive ability for the market betas. On the other hand, the predictive content for the raw returns
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seems to be relatively weaker. The specification of the panel regression is somewhat ad-hoc. The
results provided in Table 4 cannot help to distinguish between mispricing or risks as the main driving
force behind returns predictability (see, e.g., Daniel and Titman, 1998). The IPCA helps to answer
this question by unifying both lines of inquiry. As highlighted by Kelly et al. (2022), the IPCA allows
a researcher to distinguish the extent to which whether characteristics explain asset realised and ex-
pected returns due to a risk-based channel, or if characteristics predict returns because they proxy for
alpha above and beyond factor risk (i.e., mispricing or “anomaly” channel). The next section pursues

this investigation.

3 Empirical results

We report a series of statistical measures to assess the asset pricing performance of the IPCA compared
to both static and conditional observable factor models, and to a standard PCA. We follow Kelly
et al. (2019) and compute two alternative measures of aggregate goodness-of-fit for the panel of

cryptocurrency returns, namely the total RZ, and the predictive R;Qor cq> Which are defined as

~ o~ 2
e . Zi’t (Ti,t+1 - /Bz{,t)\) (6)
d—+—
9 pre Zi7t rﬁt+l )

~ o~ 2
Zi,t (Ti7t+1 - 61{7tft+1>

2
Zi,t Tit+1

2 _
Rtotal =1-

with A denoting the unconditional time-series mean of the factors. The RZ, quantifies the extent to
which a given factor model captures the total variation in the realised returns. Instead, the R}%md
captures how well differences in the average returns are explained through the model’s ability to
describe risk.” We also compare different latent and observable factor model specifications based

on two additional metrics used in asset pricing literature (see, e.g., Blichner and Kelly, 2022; Kelly

et al., 2022). More precisely, we first construct a time series R?, by aggregating individual R? =

(1 B Zt(ﬁ,tﬂ—@,zﬁﬂ)Q

5 across the time series
> Tt

1
R?SZWZR% (7)

"Notice that the denominator represents the square of the returns not demeaned. However, this is because the
historical average daily returns of individual assets is close to zero statistically speaking, that is a forecasting from the
unconditional mean would not deviation significantly from a forecast at zero. This is consistent with Gu et al. (2020)
who argue that out-of-sample comparison of fits against historical mean is flawed when it comes to individual assets.
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with 7; the number of non-missing observations in a given cryptocurrency pair. Second, we report

> (ri,t—@ﬂ ]?t) ’ )
- 5 2 |

> it

the average over the time series the cross-sectional R? = (1 -

1
R =7 ) R, (8)
t

where R2, quantifies the cross-sectional strength of the signal produced by either the IPCA or the
observable factor models. This is akin to a Fama and MacBeth (1973) where the factors are “tradable”,
or represents replicable trading strategies. The last metric used to compare different models is the

so-called relative pricing error (RPE), which is defined as

SN0

RPE = % ;‘ , 9)

AN

with 7; = Ti_l >+ Tit+1 the asset’s time series average returns and a; = Ti_l Do <n~7t+1 — Bé,tﬁH)
the average time series error, or “pricing error”. A value of RPF closer to zero implies that a given
model explain most of the systematic variation in the returns, whereas an RPFE at, or above, 100%,
implies that a given model does not capture any, or very little, systematic risk. Notice that in the
main results we focus on the relative pricing error for the managed portfolios only. This is because
both the alphas and the unconditional average returns for individual assets are all very close to zero.
As a result, the RPFE from daily individual returns would be very sensitive to outlying observations.
On the other hand the larger scale and more compact distribution of alphas and average returns on

the managed portfolios allows for a more reliable measurement of the RPE as a ratio.®

3.1 Asset pricing performance

3.1.1 In-sample results. Panel A of Table 5 reports the performance of a restricted IPCA model
with I', = 0. This implies that the variation of cryptocurrency returns are consistent with a
beta/expected return model. In addition to the performance for the restricted IPCA model, Ta-
ble 5 also reports the bootstrap p-values for the hypothesis test of Hy : I'y, = 0 with a number of

latent factors ranging from K = 1 to K = 7.° For K = 1,2,3 the bootstrap results show that we

8 Although the RPE for individual assets is much more noisy, the results still highlight a comparatively lower relative
pricing error from the IPCA against PCA and observable risk factors. Results are available upon request.

9We follow Kelly et al. (2019) and for each model specification, we construct the test statistic based on the identical
implementation of a “wild residual” bootstrap approach. We first draw 10,000 pseudo-samples under the null hypothesis
Ho : I'a = 0. For each sample, we construct a Wald-type statistic measuring the distance between the restricted and
unrestricted models. We then calculate the fraction of simulated statistics exceeding the corresponding value from the
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can strongly reject the null hypothesis I'y = 0. However, the bootstrap p-values show that when
the number of latent factors is K > 3, the variation in cryptocurrency returns is solely captured by
compensation to risk. Furthermore, the information criterion (IC) calculated as in Bai and Ng (2002)
shows that a four-factor IPCA model maximizes the information content of the latent factors. By
coupling the bootstrap and the IC, we choose the IPCA4 as our baseline IPCA specification. This
choice is further supported by comparing the performance of the restricted and unrestricted IPCA
models. For the interested reader, the full comparison between restricted and unrestricted IPCAs
is reported in Appendix C. For K > 3 factors, the additional variation in expected returns that is

captured by an unrestricted intercept is negligible compared to a restricted IPCA model.

In addition to the IPCA, Panel A also reports the results from a standard, static, PCA. Given the
unbalanced nature of the panel of returns and the presence of missing data, the PCA is implemented
by using an alternating least squares procedure to estimate the static principal components (see Ilin
and Raiko, 2010). At the individual returns level, the RZ,, R% and R2, from a PCA with seven
latent factors (PCA7) are comparable, if not better, than our baseline IPCA4. However, PCA provides
a dismal description of expected returns at the cryptocurrency pair level; the Rfmd is an order of
magnitude lower than the IPCA for each K. This suggests that although a static PCA provides a
fairly accurate description of the common variation in the returns, it is the information from the
characteristics and the consequential dynamics of the loadings that provides a better description of

risk compensation across assets.

Panel A also reports the same set of performance measures using the set of characteristic-based
portfolios as test assets. As a result, all R? measures can be redefined in terms of managed portfolios
based on IPCA parameters I'g (see Kelly et al., 2019).19 The explanatory power of the IPCA is
markedly stronger for portfolio returns than for returns on individual assets. For instance, the baseline
IPCA4 specification generates an R, , (Rgred’x) of 51.9% (1.93%). This compares to 16.9% (0.37%)
for the static PCA7 model. Both the time-series and cross-sectional aggregations of the R? are also

in favour of the IPCA4 model: the R%s,x (R?

cS,T

) for IPCA is equal to 45% compared to 10% (43%

compared to 13%) from the PCA7 model. The RPFE is also significantly in favour of the IPCA model;

data to obtain the p-value for the IPCA model considered.

Kelly et al. (2019) argues that the IPCA methodology incorporates a portfolio notion that circumvents a common
problem in empirical asset pricing; the choice of the test assets through which a given factor model can be tested. When
looking at equity markets, researchers tend to use double-sorted portfolios formed on different characteristics, including
size and book-to-market ratios (see, e.g., Fama and French, 2015). Nevertheless, the choice of the most appropriate
portfolios has been a source of debate (Lewellen et al., 2010; Daniel et al., 2012).
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the RPE for the IPCA4 is down to 6.6% compared to a 78% from the static model with seven latent
factors. This finding is consistent with prior results for equity, corporate bond, and option returns,
where the relative price error of IPCA tends to be smaller for managed portfolios (see, e.g., Kelly

et al., 2022).

Turning to observable risk factor models, Panel B of Table 5 provides the same set of performance
metrics obtained by replacing the latent factors, either with or without instruments, with a series
of long-short portfolio returns. Liu et al. (2022) shows that three observable risk factors, the excess
returns on the market, size, and momentum, can span a great deal of the cross-sectional variation
cryptocurrency returns at a weekly frequency. Cong et al. (2021b) consider a four factor based on the
network-to-market value ratio to proxy for a valuation ratio based on on-chain network activity. We
expand their factor structure based on the results in Table 3: in addition to mkt, size, r22_1 and
bm, we include liquidity (bidask), realised volatility (rvol), and reversal (max7). In total we consider
seven observable factors, so that a comparable analysis can be made with the IPCA and the PCA

specifications. A full description of each factor portfolios is provided in Section 2.2.'!

The static factor model specification follows a standard factor pricing model with the betas esti-
mated from a panel regression of cryptocurrency returns on observable risk factors. The instrumented
version of the observable risk factor model can still be estimated using the IPCA procedure. More
specifically, letting g; denote the set of observable risk factors, the instrumented principal component

model can be rewritten as

rer1 = 25, Uggert + nern = vee (p) (2it ® ger1) + Mg, (10)

Given that the factors are pre-specified, this specification can be estimated by evaluating only the
matrix of loadings I'g from the associated first-order condition. We impose a zero-intercept constraint,
i.e., I'qy = 0, for both the static and dynamic observable factor models to align with the baseline
IPCA specification and isolate the jointly explanatory power of the latent factors and the individual
characteristics. The notation is consistent across models, meaning that with FFl (IFF/) we indicate a

static (instrumented) observable factor model with [ =1,...,7 risk factors included.

The results have three interesting aspects. First, the explanatory power of the IPCA factors

111 a set of unreported results, we replace bidask with illiq, rvol with ivol, and max7 with max30. All alternative

specifications produce lower R?,, and Rimd, so we choose the best possible specification for the observable factors model.
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outperforms observable risk factors by a significant margin. For instance, our baseline IPCA4 model
generates a 13.4% R2,,, whereas a static factor model with seven portfolios (FF7) delivers a 10.8%
R?,. Perhaps more importantly, a model with seven observable factors (FF7) produces a dismal
explanation of the conditional expected returns, with an Rf)red of -0.02% compared to 0.32% from
the IPCA4. Second, turning to the time-series and cross-sectional metrics, while the R? is somewhat
comparable between the IPCA4 and the FF7 model, the R2, from the former is 11.3% versus a 8.6%
static observable factor model with seven risk factors. Third, the performance gap in favour of the
TPCA is markedly larger for portfolio returns. For instance, the baseline restricted IPCA4 specification
generates an R7, (Rﬁred’x) of 51.9% (1.93%) against a 19.5% (0.8%) from the static and 21.8%

(0.88%) from the instrumented observable factor models.

Both the time-series and cross-sectional aggregation of the R? for managed portfolios are also in
favour of the IPCA4 model: the R , is equal to 45% for IPCA4 versus 12.3% from the FF7 model.
Similarly, the RZ, , for the IPCA4 is equal to 43% compared to 12.9% for the FF7 model. The relative
pricing error is also considerably in favour of the IPCA, with an RPE of 6.66% for the IPCA4 against

a 63.5% for the FF7 model. Interestingly, the performance gap between a static versus a dynamic

observable factor model is quite small.

3.1.2 Out-of-sample results. We expand the previous in-sample performance analysis and con-
duct an out-of-sample evaluation of the IPCA and other competing factor model specifications. The
models are estimated for an expanding window starting from March 1st 2020, that is, the first half
of the data available are used as “burn-in” sample. We perform forecasts for each period, based
on the estimated parameters and factor returns at that time. For observable factors, we use the
actual portfolio returns in the forecast construction. For the IPCA factors, our computations of the
out-of-sample factor returns follows the framework of Kelly et al. (2019). We then evaluate the out-
of-sample performance of each model based on the realized returns and model forecasts of individual

cryptocurrencies and managed portfolios.

Table 6 summarises the results. The specification with four latent factors explains 11.5% of the
total variation in the out-of-sample realized individual returns. By comparison, the RZ, obtained from
the FF7 and IFF7 observable factor models is 8% and 8.5%, respectively. Further, IPCA produces a
substantially better risk-based explanation of the average returns across individual assets: the out-

of-sample Rfmd is 0.3%, compared to a 0.03%, 0.02%, and 0.09% obtained from the PCA7, the static
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FF7 and the instrumented IFF7 observable factor models, respectively. The RZ, and the RZ, are also

higher for IPCA against the observable factor models, regardless of a number of factors considered.

Similar to the in-sample results, the gap between the IPCA and observable factor models widens by
using managed portfolios as test assets. The R?Ot’l, for the IPCA4 increases to 52.7%, while it reaches
the maximum of 19.2% (22.23%) for the FF7 (IFF7) model. Perhaps more importantly, the IPCA4
substantially improves upon the PCA7, and both observable factor model specifications, i.e., FF7 and
IFF7, when it comes to describe risk compensation. This is shown by a substantially larger Rzred@
— 2.2% for IPCA4 versus 1.1% for the best performing competing factor model — and a much lower
relative pricing error RPE — 10.9% for the IPCA4 versus a 57.3% obtained from the best performing
alternative factor model. This result confirms that, compared to both PCA and observable factors, the
IPCA better captures some fundamental risk-reward relationships that would be otherwise buried in

the noise of highly volatile daily returns. More generally, regardless of the number of factors required

to eliminate the mispricing, the IPCA factors maintain a fine statistical performance throughout.

3.1.3 Mean-variance efficiency. To test the mean-variance efficiency of the IPCA factors vs
static latent/observable risk factors, we carry out a series of simple asset pricing tests based on
different portfolios as test assets. We study the mean-variance efficiency of two sets of portfolios
— a set of managed portfolios produced using the IPCA methodology, and a series of double-sorted
portfolios based on size and alternative characteristics. We compare the baseline ITPCA4 model against

the PCA7 and the instrumented observable factor model IFF7.

Figure 2 reports the results. For convenience, we highlight significant alphas with filled markers.
The plots also report the average absolute alpha for each specification, to quantify the average size
of mispricing across different models. Note that, for the conditional factor models IPCA4 and IFF7,
the alphas are computed as the time-series average of the period-by-period portfolios residuals. For
the static factor model PCA7, the alphas are computed as intercepts from time series regressions of
portfolio returns on the latent factors. For comparability, we assume a portfolio volatility target of
5% daily, consistent with the historical volatility of long-short portfolios, and rescale the portfolio

weights accordingly using only backward looking information.

The main results confirm that the IPCA significantly reduces mispricing: the average absolute
pricing error for the IPCA4 is 0.16% on a daily basis, compared to 0.59% and 0.49% from the PCA7,

IFF7 models, respectively. Thus, IPCA produces less than a half average absolute pricing errors than
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do benchmark latent factor models and existing portfolios. We also find that the estimated alphas
from both the PCA and the observable factors are clustered around the 45-degree line. This indicates
that static latent or observable factors may not provide an accurate risk-based explanation of managed

portfolio returns.

Table 7 breaks down the alphas from the IPCA and both the PCA and observable factor models
for each characteristic separately. Panel A reports the results for the full sample of daily returns corre-
sponding to Figure 2. This analysis shows that the average absolute alpha from IPCA is substantially
smaller than those in the competing factor models. Further, the alphas of managed portfolios are
uniformly smaller in absolute value in the conditional IPCA model, with the exception corresponding
to the market beta (capm (). More generally, the IPCA seems to unequivocally provides a more accu-
rate risk-based description of the cross-sectional variation of the managed portfolio returns compared

to both PCA and observable factor models.

We investigate the mean-variance efficiency of IPCA factors also using a set of 25 double-sorted
portfolios as test assets. These portfolios should provide a more challenging case because they are not
targeted by the IPCA estimation. Figure 3 reports the alphas from IPCA4, PCA7, or IFF7, respectively.
We report the results for portfolios sorted on size and r22_1 (Panel A), size and bm (Panel B), and
size and max7 (Panel C). Two observations are noteworthy. First, double-sorted portfolios represent
indeed a more challenging set of test assets for IPCA. For instance, the average absolute daily alpha
for portfolios sorted on size and bm is 0.24% versus the 0.16% on the 28 managed portfolios. This is
also reflected in the performance of PCA. With the exception of the double-sorted portfolios on size
and max7, the PCA7 and IPCA7 produces a similar average absolute pricing error. Yet, the pricing
performance of the IFF7 is rather dismal compared to the IPCA. For instance, the average absolute
alpha for the size and r22_1 portfolios is 0.3% versus 0.18% from the IPCA4. A similar gap applies

to the size and bm double-sorted portfolios.

The second observation from Figure 3 pertains the significance of the alphas and the correlation
with the raw return across portfolios. Take for instance the 25 portfolios sorted on size and r22_1; 18
(12) portfolios have significant alphas in the IFF (PCA7) model, whereas the IPCA4 produces at most
5 portfolios with significant abnormal returns. The discrepancies in the significance of the pricing
errors between the IPCA and the competing strategies persists across different sorting characterstics

as shown in Panel B and C of Figure 3. In addition, when we visually assess the distribution of
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alphas, we find that portfolio alphas from the PCA and observable factor models exhibit a clear
pattern: portfolio alphas increase with raw returns. This suggests a systematic shortcoming of both

the PCA and observable risk factors in pricing the double-sorted test portfolios.

3.1.4 Factor tangency portfolios. We now compare the IPCA, PCA, and observable factors, and
report the ex ante unconditional tangency portfolio performance for each group of factors, to describe
their multivariate efficiency. The optimal allocation is based on recursive forecasts that we carry out
by expanding the window of observations starting from March 1st 2020. We then calculate the mean-
variance portfolio using the mean and covariance matrix of estimated factors through ¢ and tracking
the post-formation ¢ + 1 return. We assume a portfolio volatility target of 5% daily, consistent with
the historical volatility of long-short portfolios, and rescale the portfolio weights accordingly using

only backward looking information.

Table 8 shows summary statistics of tangency portfolios combining up to seven IPCA or observable
factors. It reports the daily average returns, the Sharpe ratio and skewness, as well as the alphas of
tangency portfolios from both a CAPM model (acapar) and the alpha obtained by regressing the
returns of the tangency portfolios on the seven observable risk factors considered in the main analysis.
The tangency portfolio for the IPCA model yields a daily Sharpe ratio of 0.84, which is twice as large
as the best Sharpe ratio of 0.4 for the FF7 model. When we consider more than four latent factors,
the performance of the IPCA tangency portfolios do not significantly improve. This is consistent with
the bootstrap results in Table 5, which suggests that a four factor IPCA specification is sufficient to
provide a risk-based explanation of cryptocurrency returns. The tangency portfolio constructed from
PCA do not outperform the equivalent based on observable factors. For instance, the daily Sharpe

ratio from PCA7 is half the FF7 equivalent.

On a risk-adjusted perspective, the tangency portfolios from the IPCA substantially outperform
both PCA and observable risk factors. For instance, the acapps for the IPCA4 is as high as 4%, against
a 1.1% and 1.7% obtained from the PCA7 and FF7, respectively. Interestingly, the seven observable
factors can not span the performance of the tangency portfolios based on the IPCA4 or PCA7 factors.
The apy is 3.7% (t-stat = 19.5) and 1.05% (t-stat = 3.9), respectively. The spanning property is
confirmed by looking at the tangency portfolios from the observable factors: once conditioning on the

factors itself, the alphas are all economically negligible and not statistically significant.
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3.2 Sub-sample analysis

Figure 1 highlights two main aspects of the sample under investigation, and in fact, of the cryptocur-
rency market at large. First, the total market capitalization significantly increases from the onset of
the COVID-19 crisis; from the roughly $300 billions in March 2020, the total market value increased
tenfold, to an astonishing $3 trillions towards the end of 2021, then lost more than 60% of its value
by the end of the sample. Second, the size of the cross-section is fairly unbalanced before March 2020,
but stabilizes somewhat thereafter. This is a general feature of the cryptocurrency market, with the
number of tokens at the end of the sample almost doubling from the approximately 10,000 tokens

available in early 2020.

To test the reliability of the IPCA framework in different scenarios and market conditions, in
relation to both time-series and cross-sectional variation, we replicate the main empirical analysis
for two different non-overlapping sample: a sub-sample from September 1st 2017 to March 1st 2020
(the solid red vertical line in Figure 1), and another sub-sample from March 2nd 2020 to September
1st 2022. It is worth reiterating that by dividing the sample, we challenge the IPCA along two
dimensions. For the first sub-sample the panel of cryptocurrency pairs is highly unbalanced. It is
smaller on average, and steadily increases over time. For the second sub-sample, the cryptocurrency
market experienced significant drawdowns and volatility, while the size of the cross-section remained
relatively more stable. Such abrupt variations should provide additional insights into the robustness

of the asset pricing results across different conditions.

Table 9 reports the results for both sub-samples. Both the bootstrap test and the Bai and Ng
(2002) information criteria support a four factor structure for the IPCA across different periods.
Similarly, there is no sensible reduction of the relative pricing error RPFE beyond three latent factors.
The performance of the IPCA versus PCA and observable risk factors is quite heterogeneous across

sub-samples. For instance, when we compare the two sub-samples, the RIZ) for IPCA4 improves

red
from 0.29% pre-Covid to 0.4% in the second sub-sample. Furthermore, the PCA and the observable
factor models both provide a less accurate description of the risk compensation across individual
cryptocurrency pairs with an Rz%r g of 0.17% and 0.2%, respectively, in the period post March 1st
2020. However, the PCA shows a larger R?,, for individual assets compared to the IPCA, and both

substantially outperform a FF7 model.

The R?, and the R2, also provide some mixed results, with the PCA substantially improving
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upon the TPCA over the second sub-sample. This is possible due to the more balanced nature of the
panel of observations over the second period. Nevertheless, compared to observable risk factors, the
TPCA model provides a better fit for the variation in both realized and expected returns as well as
a better characterization of both the time series and cross-sectional variation in the returns. This is

. . . . . 2
particularly evident for risk compensation as approximated by the R ;.

The use of managed portfolios as test assets provides some more clear-cut evidence in favour of
the IPCA. For instance, the R7, , is 51% for the IPCA4 versus 21% and 24.9% from the PCA7 and the
FF7 models, respectively, in the period after March 1st 2020. The same applies for the R?)Ted,x, with
the observable risk factors that deliver a 2.11% versus a 3.33% obtained from the IPCA4. Perhaps
more importantly, the IPCA provides a substantially lower relative pricing error compared to both
competing classes of factor models; the RPE from the IPCA4 is 8.4% (6.9%) for the first (second)
sub-sample, compared to a 90% and 84% (63% and 43%) from the PCA7 and FF7, respectively, over

the first (second) sub-sample.

3.2.1 Mean-variance efficiency. We replicate the asset pricing tests as reported in Section 3.1.3.
Figure 4 reports the scatter plot of the alphas obtained from the IPCA4, the PCA7 and the IFF7 model,
respectively. As for the full sample, for convenience, we highlight significant alphas with filled markers.
The plots also report the average absolute alpha for each specification, to quantify the average size
of mispricing across different models. The main results confirm that the IPCA pricing performance

is more consistent with mean-variance efficiency.

Turning to the first sub-sample, the average absolute pricing error across managed portfolios is
0.18%, compared to 0.51% from the PCA7 and 0.47% from the IFF7 factor models. Panel B shows
that the gap in terms of mean-variance efficiency widens in favour of the IPCA over the post-March
1st 2020 period. For instance, the average absolute alpha from the IPCA is at 0.22% daily, against
a 0.77% and 0.54% obtained from the PCA7 and IFF7, respectively. Interestingly, the significance of
individual alphas is slightly higher over the second sub-sample. For instance, pre-March 2020 there
are 7 managed portfolios alphas from the IPCA that are significantly different from zero. Instead,

over the post-March 2020 period the number of significant alphas from the IPCA grows to 9.

Figure 4 also shows that the estimated alphas from the PCA and the observable factors are more
clustered — compared to the IPCA — around the 45-degree line. This holds across both sub-samples.

Therefore, the evidence suggests that conventional latent or observable factor models may not be able

25



to provide an accurate risk-based explanation of the cross-sectional variation of managed portfolio
returns over time. To a large extent, the results in Table 9 and Figure 4 confirm that the IPCA model

substantially reduces mispricing.

3.3 Individual assets quality and IPCA performance

Intuitively, returns on “low-quality” pairs, namely smaller cryptocurrency pairs with high trading
frictions, tend to exhibit different behavior in terms of their covariances with characteristics, including
liquidity and downside risk. For instance, Babiak et al. (2022) show that liquidity risk within the
context of cryptocurrency markets is not uniformly spread across assets, but tends to be concentrated
on assets with smaller market capitalization and lower trading volume. More generally, there is
abundant evidence in the equity literature that adverse selection and information asymmetries tend
to be concentrated on smaller, high volatile assets (see, e.g., Easley and O’Hara, 2004; Hendershott and
Seasholes, 2007). This cross-sectional heterogeneity possibly could potentially affect the performance

of factor pricing models.

In particular, the fact that smaller assets tend to be less liquid and more volatile raises the question
of whether adding smaller assets actually has any significant statistical and economic effect on the
main results, only because factor models may capture the variation of smaller assets at the expenses
of larger ones. It is worth noting that the concept of “small” vs “large” assets in the context of
cryptocurrency markets has non-trivial implications, considering the evident market concentration
and skewed distribution both in size and trading activity (see Table 2). In practice, any asset with
a market capitalization below the top 150, which at the time of writing is roughly $150 millions, can

be considered a micro-cap by equity standards.

To better understand the role of lower quality pairs on the asset pricing performance of the IPCA
versus both PCA and observable factor models, we break out model R?’s for individual returns
grouped according to three different characteristics. Each day, we sort the cross section of individual
assets in quartiles based on market capitalization, number of active addresses or the average daily

trading volume (see Section 2.2 for details). Then we measure the R7, and Rg from the IPCA, the

red
PCA and the observable risk factors separately for each quartile. Note these results are not based
on separate model re-estimation for each group of assets. This would mechanically allow each factor

model to fit different groups based on different parameters or weighting schemes. Instead, we slice the
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factor model performance by keeping factors and parameters fixed at their estimates from the unified

sample, and we recalculate the R?’s among each group of assets.

Table 10 reports the results. When we focus on the TPCA performance, the ability to explain
the common variation in the realised returns increases with the market capitalization, the number of
active addresses and the average trading volume. For instance, the RZ,, from the IPCA4 for smaller
assets is 9%, whereas is 27% for the large assets. Similarly, the explained total variation from the
IPCA4 is 11% for cryptocurrencies with a low number of active addresses, while is 22% for assets with
a higher network activity. Higher trading volume also coincides with a higher R?,, from the IPCA4;

8.34% for assets with low trading volume compared to 28.7% for assets with high trading volume.

Opposite to the RZ,, the ability of the IPCA to describe the differences in the expected returns
across assets seem to be inversely related to assets quality. For instance, the Rz%red from the IPCA4
is 0.48% for the smaller assets, whereas is -0.02% for the subset of cryptocurrencies with the highest
market capitalization. Similarly, for the group of cryptocurrencies with the lowest trading volume the

R2

ored from the IPCA4 is 0.56% against a 0.05% for the assets with high average trading volume.

Overall, the performance of the IPCA within the context of cryptocurrency markets is broadly
similar to the evidence on more traditional asset classes such as equity (see, Kelly et al., 2019).
The IPCA offers an especially accurate description of realised returns of “higher-quality” assets.
Instead, we see that IPCA produces a higher predictive R? for “lower-quality” assets, meaning those
cryptocurrencies which are smaller in terms of market capitalization, less liquid and less active from

a fundamental blockchain perspective.

A similar pattern emerges for both the PCA and the observable factor models. When we compare
the IPCA against both PCA and observable factor models, Table 10 broadly confirms that our dynamic
latent factor model provides a more accurate risk-based description of realised and expected returns
across different groups of assets. For instance, the R?, from the IPCA4 for the smallest (largest )
assets is 9% (26.7%), against a 6.5% (24.3%) from the IFF7 model. Similarly, for the group of assets
with the smaller (larger) trading volume, the TPCA4 produces a total R? of 8.4% (28.7%), against an
R?, of 5.2% (24.8%) obtained from the IFF7 model. Consistent with the full-sample results, the PCA
represents a rather challenging benchmark when it comes to explain the common variation in the
realised returns. However, the IPCA stands out for its predictive performance. For instance, within

the group of assets with a lower (higher) number of active addresses, the IPCA4 produces an waed
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of 0.29% (0.13%) against the 0.03% (0.01%) of the PCA7 and the 0.08% (-0.03%) obtained from the
IFF7. Similarly, for assets with lower (higher) trading volume, the IPCA4 produces a predictive R?
of 0.56% (0.05%) against the 0.22% (0.01%) of the PCA7 and the 0.21% (-0.12%) generated by the
IFF7. Overall, the IPCA provides a more accurate risk-based explanation of the variation in expected

returns than both PCA and standard observable factor models.

3.4 Weekly returns

Our analysis has thus far focused on the daily return horizon. Given the relatively short history of
cryptocurrency markets (see Figure 1), the use of daily returns substantially increases the amount
of information that can be used to extract latent factor models and/or to construct observable risk
factors. However, daily returns are particularly volatile, especially within the context of cryptocur-
rency markets. Thus, it is possible that IPCA in part capture noisy fluctuations in the dynamic of
individual returns, effects that may be less influential at a lower frequency. In addition, by using
weekly returns, while the size of the cross section remains unchanged, the length of the time series is

substantially reduced, creating a further challenge for the extraction of latent factors.

As an extension and robustness assessment, we re-analyse the performance of the IPCA model
using a weekly aggregation of the returns and individual characteristics. A weekly aggregation of both
individual returns and observable risk factors is consistent with some of the existing literature, such
as Liu et al. (2022); Cong et al. (2021b). The basic structure for weekly returns is unchanged from the
main empirical analysis on daily returns, with the exception that individual returns are aggregated
weekly. Given that cryptocurrency markets are operational on a 24/7 basis, the weekly aggregation
is defined with a start time of Sunday 00:00:00 UTC. Individual characteristics are also aggregated
weekly, where the aggregation depends on the nature of the information. For instance, both the new
add and active add variables are aggregated weekly by summing up the daily observations. The
weekly market beta capm [ is approximated as the average daily value within the week. The same

holds for liquidity measures such as i11iq and bid-ask spreads.

Table 11 reports both the in-sample and out-of-sample performance of the restricted IPCA with
I, = 0 versus a static PCA and an instrumented observable factors model.!? Similarly to the main

results, the weekly aggregation seems to favour a small-scale factor model to explain the variation

12We choose to report the instrumented observable risk factor model because it represents a more direct comparison
with the IPCA. Furthermore, the results from the static version of the observable risk factor model are slightly worse,
so that the dynamic version represents a more challenging benchmark for the IPCA.
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in both realised and expected returns. The bootstrap test suggests that a two-factor IPCA already
provides a risk-based explanation of the returns which is potentially solely based on risk exposures,
ie, 'y =0 for K > 2. A more data-driven information criterion suggests that three latent factors
capture most of the comovement in the individual returns. Similarly, the relative pricing error on the
managed portfolios shows that there is no considerable pricing gain after an IPCA with three latent

factors. For these reasons, in the following we consider an IPCA3 as our baseline specification.

Focusing on the out-of-sample returns, the performance of the IPCA significantly increases. This
is potentially due to the higher signal-to-noise ratio of weekly returns compared to daily returns.
For instance, the R7,, (wa .q) obtained from the IPCA3 model on weekly individual returns is 19.7%
(0.9%), which is double the 11.5% (0.3%) obtained on daily returns. Also the time series and cross
sectional R? are higher when using weekly returns. For instance, the IPCA3 fitted on weekly data

produces an R?, (R2,) of 25.2% (14.2%) compared to a more modest 20.3% (8.5%) for the daily

returns.

The explanatory power of the static PCA and the instrumented observable factors model also
increases when we use weekly returns. The out-of-sample R7, from the benchmark IFF7 model
jumps to 15.1% compared to a 8.5% based on daily returns. Similarly, the PCA7 performance goes
from 16.7% for daily returns to 23.2% for weekly returns. Nevertheless, the IPCA performance is still
substantially better than both static latent and observable risk factor models at the weekly frequency.
This is particularly clear when it comes to explain the variation in the average returns; the IPCA3
produces an Rfmd of 0.9% against a 0.36% and 0.26% from the PCA7 and IFF7, respectively. The
IPCA also provides a much more accurate risk-based representation of the variation in both realised

and expected returns of managed portfolios. For instance, the R?Ot’m (R% _,.) from the IPCA3 is

pred,x
56.4% (7.6%) against a 34% (4.5%) and 26.9% (2.3%) obtained from the PCA7 and IFF7, respectively.
Perhaps more importantly, the IPCA3 produces a smaller relative pricing error of 6.6% compared to

46.8% and 68.4% obtained from both competing factor model specifications.

3.4.1 Mean-variance efficiency. Figure 5 reports the average absolute alphas for the conditional
IPCA and the competing latent and observable risk factor models. For the instrumented models
(IPCA3 and IFF7), the alphas are computed as the time-series average of the period-by-period port-
folios residuals. Instead, for the static latent factor model (PCA7) and observable factors (FF7), the

alphas are computed as intercepts from time series regressions of portfolio returns on the factors. All
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portfolios are re-leveraged to yield 35% weekly volatility.

Similarly to the case of daily returns, the IPCA produces a substantially lower average absolute
pricing error, with a 2.9% from the IPCA3 versus 5.8% and 7.5% obtained from the PCA7 and IFF7,
respectively. Furthermore, the estimated alphas from the competing factor models are more clustered
around the 45-degree line compared to the IPCA. This suggests that, also at the weekly frequency,
the TPCA provides a risk-based explanation of the variation in managed portfolio returns which is

more consistent with theoretical underpinnings of mean-variance efficiency.

Delving deeper into the significance of individual managed portfolio alphas, Panel B of Table 7
shows that not only do both PCA7 and the benchmark IFF7 have more significant alphas compared to
the baseline IPCA3, but also that those significant alphas tend to have a much larger value annualized.
For instance, the ay7 1 is 6.8% for the IPCA3, while is more than 20% across all competing factor
models. Similarly, the ayz1 is 5.6% for the IPCA model versus more than 12% (19%) for the
observable factor models (PCA). This indicates that, despite the smaller average absolute pricing error,
observable and standard latent factor models still provide a less accurate risk-based representation of

cryptocurrency returns.

4 TIPCA factors interpretation

Understanding the nature of the IPCA performance is key to a more structural interpretation of the
results. In this section, we test for the driving factors in the dynamics of risk exposures and provide
an interpretation of the latent factors extracted from the cross section of individual returns based on

the TPCA methodology.

4.1 Expected returns and individual characteristics

Assuming the returns dynamics is solely described by individual characteristics, i.e., 'y, = 0, the
expected returns from the IPCA are defined as Ey[rj¢y1] = Bz{,tﬁ_Fl, with Ei,t = z;tf/g a direct
function of z;;, an L x 1 vector of observable cryptocurrency characteristics. As a result, by testing
the significance of the I*" row in the parameter matrix I'g, one can understand the role of each z;;

characteristic for the dynamics of expected returns Ey [r; ¢41].

We follow Kelly et al. (2019) and implement a bootstrap approach that tests the joint significance

for each individual characteristics across K latent factors. Let the I row in the parameter matrix
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I's = [v81,--- ,me]/ correspond to the loadings on the K factors of the I characteristic. The

null hypothesis is that the entire [*?

row must be zero; that is, the Ith characteristic does not drive
the dynamics of the factor loadings. To test this hypothesis, we begin by estimating an unrestricted
IPCA model, in which coefficients of I'g are not set to zeros, and save the estimated model parameters
{As13E,, latent factors {ﬁ}le, and managed portfolio residuals {c?t}tT:l For each characteristic [,
we then compute the Wald-type statistic in the form /V[Zg,l = ﬂ%ﬁg,l. Next, we use the residuals to
resample the managed portfolio returns under the restriction vg; = Ok xi1.2 Then, we re-estimate
the IPCA model using these synthetic portfolio returns and compute the bootstrap test statistic
Wg,z for the b bootstrap draw. For the I*! characteristic, the p-value of the null hypothesis test
equals the fraction of bootstrapped /ngl statistics exceeding the empirical value /Wg,l. Because all

of the characteristics are cross-sectionally rank standardized, the reported magnitudes are directly

comparable across characteristics.

Table 12 show the p-values for each of the 28 characteristics for five different IPCA specifications,
with K = 2,3,4,5,6, based on the full sample. In addition, we report the testing results for the
baseline TPCA3 and IPCA4 when we split the sample in pre and post Covid-19 outbreak. Finally,
the table also reports the testing results for the IPCA2 and IPCA3 specifications fitted on the weekly

aggregated returns.

Focusing first on the full sample, we find that only a handful of characteristics contribute to ex-
plain the dynamics of expected returns as indicated by p-values below the conventional 5% threshold.
For instance, for the IPCA3 specification, variables related to liquidity (illiq, bidask), past perfor-
mance (max7, and max30), and volatility (rvol, and ivol) are statistically significant at conventional
thresholds. The nature of the characteristics that drive the loadings for the IPCA4 model is similar,
albeit there are some differences. For instance, two trading frictions variables, such as std_to and
std_vol, are now significant with a p-value below 0.05. Yet, i11iq, max7, max30 and ivol, are all still
significant at conventional levels. Interestingly, the higher the number of factors, the more “sparse”
is the nature of the loadings. This suggests an interplay between the role of the latent factors and

the characteristics in capturing the common variation in the returns.

13Starting from the restricted matrix

=1 > /\ /\ R ’

Fﬁ = [’Yﬁ717 ceey VBT, 0K><17 VB,l+1, VB,L} )
the bootstrap portfolio returns are defined as 2 = thlﬁﬁ + cf? , in which {07? 1L, are the residuals for the b*® bootstrap
draw.
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Except for a few nuances, the testing results over the two sub-sample periods confirm the pattern
over the full sample. Liquidity, past performance, and volatility seem to play a major role for the
dynamics of the factor loadings. For instance, for the IPCA4 specification, i11iq, max7, max30, and
ivol, are all significant at 5% levels across both sub-samples. A few changes also occur; for instance,
over the pre-Covid 19 period, a more parsimoniou three-factor IPCA model implies that few variables

related to liquidity, such as bid-ask and turnover also drive the dynamics of the factor loadings.

The last two columns of Table 12 shows the testing results for the aggregation to weekly returns.
The set of parameters I'g for the weekly returns tend to be similar to daily returns. For instance,
both illiq and rvol are significant for the IPCA3 model estimated at either frequencies. With
the exception of the market beta (capm f3), the testing results at the monthly frequency are mostly

consistent with the daily returns, both for the full sample and the sub-samples.

One comment is in order, a simple correlation analysis shows that some of the individual character-
istics are potentially quite correlated; for instance, $volume is quite correlated with size, and bidask
is quite correlated with i1liq. As a result, rather than discussing the exact characteristic, our aim
is to detect the underlying economic forces that drive the factor loadings. Thus, the results suggest
that to a large extent the factor loadings, and therefore expected returns, are primarily affected by

liquidity, volatility, and past performance.

4.2 TPCA and observable risk factors

We formally tests whether coupling latent and observable risk factors significantly improves the ex-

planatory power of the IPCA model. We estimate an extended IPCA model of the form

Pigt1 = Biyfer1 + 074 gev1 + €ip1- (11)

with the term Bg}t fi+1 being the same as in the main IPCA specification. The new term is the portion of
the return variation described by the M x 1 vector of observable risk factors ¢g;11. For consistency, the
loadings on both observable and latent risk factors are instrumented using the same set of individual
asset characteristics, i.e., ;; = zgvtl“(; where I's is an L x M mapping from characteristics to loadings.
The estimation of Eq.(11) is a simple extension of the original IPCA in Eq.(4)-(5). That is, the
model with nested observable risk factors is mapped to the original IPCA by augmenting the factor

specification to include giy1. A detailed description of the estimation procedure appears in Kelly
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et al. (2019).

Based on Eq.11 the incremental explanatory power of the observable risk factors g;11 can be
evaluated in two ways. First, we directly test for the incremental contribution of g;y1 by testing for
the significance of the corresponding matrix of parameters I's. Second, one can compare the asset
pricing performance of the IPCA with and without additional observable factors, and directly verify

the incremental asset pricing performance over a given IPCA specification.

Panel A of Table 13 formally tests whether the inclusion of observable factors improve over IPCA.
We report the results for both a joint test on the inclusion of multiple factors, from FF1 to FF7, and
for the inclusion of one single factor. The tests, nest the various sets of observable risk factors outlined
in Section 2.2 (represented by columns) with different number of latent IPCA factors (represented by
rows). Individual hypothesis tests show that the market portfolio (mkt), the size factor, and realised
volatility (rvol) carry some significant loading when added to the IPCA4 specification we used in the
main empirical analysis. Differently, when conditioning on five latent factors, only the market portfolio
carry some significant additional effect. When we test jointly the additional information content of
observable factors, again the hypothesis test points towards a significant additional explanatory power

of the market portfolio for most IPCA specifications.

Despite the marginal significance of the market portfolio returns conditional on the TPCA fac-
tors, Panel B of Table 13 shows that none of the observable factors offer an economically relevant
improvement of the IPCA’s total or predictive R?. For instance, the R?, obtained by including seven
observable risk factors to an IPCA4 model is 13.65% against a baseline 13.37% (labelled as FFO in
Table 13). More importantly, including observable risk factors to explain the variation in expected
returns is actually economically slightly detrimental; for instance, the Rfmd obtained by including

seven observable risk factors to an IPCA4 model is 0.29% against a baseline 0.32%.

Turning to the managed portfolios, as we add more latent factors, the marginal contribution of
observable factors to explain the common variation in realised and expected returns is negligible, in
fact slightly negative. For instance, the R?ot’m from the IPCA4 + FF7 factor model is 51.2% versus
51.9% obtained from the baseline TPCA4 model. Similarly, an IPCA with four latent factors produces

a predictive R? of 1.93% versus a 1.77% obtained from an expanded model including seven ob-
P

red,r
servable factors. Overall, the evidence shows that adding more observable factors does not materially

improve the ability of the IPCA to provide a risk-based explanation of either realised or expected
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returns. This is consistent with some of the existing results within the context of traditional equity
(see, e.g., Kelly et al., 2019), corporate bond (see, e.g., Kelly et al., 2022) and option markets (see,
e.g., Biichner and Kelly, 2022).

4.3 Latent factors and asset characteristics

Because the factors in the IPCA framework are not ordered and are only identifiable up to a rotation,
creating a detailed interpretation of the individual factors is problematic, perhaps even inappropriate.
Moreover, we caution that any labeling of the factors is imperfect, because each factor is influenced
to some degree by all of the characteristics, and the orthogonality condition implies that none of
the latent factors will match an exact characteristic. Nonetheless, in this section, we build upon the

intuition of Ludvigson and Ng (2009) and provide an interpretation of the latent factors based on the

2

marg O @ univariate regression of each of the 28 different managed portfolios onto each

marginal R

estimated IPCA factor, one at a time, using the full sample of observations.

For the ease of exposition, in Figure 6 we report the results for four IPCA specifications with
K = 2,3,4,5 latent factors. We show the cumulative R? for each managed portfolio on each factor
as a measure of correlation. Focusing on the two latent factors from the IPCA2 model, the first factor
is primarily correlated with the capm S and partly with on-chain network activity, although on a
smaller magnitude compared to the second factor. The latter more strongly correlates with liquidity,
volatility, trading frictions, and the VaR(5%). Overall, one could identify Factor 2 in the IPCA2 as a

market inefficiency factor.

The top-right panel of 6 reports the R? of the regressions of individual managed portfolios on the
IPCA3 three latent factors. Again, Factor 1 is primarily correlated with market risk and partly with
on-chain activity. The second factor seems to correlate for the most part with short-term reversal r2_1
and bm, in that the marginal R? for is higher than the one corresponding to Factor 1 or 3. Indeed,
while max7 is also quite correlated with Factor 2, the lion’s share in terms of correlation is played by
Factor 3. The same applies for $volume and size. As a result, Factor 2 within the IPCA3 specification
seems to be primarily related to valuations and short-term performances. Factor 3 shows a much more

heterogeneous correlation, in particular in relation to trading friction measures and volatility.

The bottom-left panel of Figure 6 reports the marginal R? obtained regressing the managed port-

folios and extracted factors from an IPCA4 model. As we add one more latent factor, the identification
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becomes slightly more clear-cut. For instance, Factor 1 still primarily correlates with the market beta.
However, Factor 2 now is more clearly related to two measures of short-term reversal, such as max7
and r2_1. With the exception of turnover, Factor 3 is primarily correlated with measures value, such
as bm, size, and $volume, and growth such as new add and active add. In other words, Factor 3 can
be interpreted as a “value” factor as it combines both valuation and growth aspects in the spirit of
the Fama-French HML portfolio. Finally, Factor 4 is mostly correlated with both past performance,
liquidity (as proxied by bidask and illiq) and measures of trading frictions, such as std_to and

std_vol.

Finally, the bottom-right panel of Figure 6 reports the R? from the auxiliary regressions on the
IPCAS five latent factors. Factor 1 is primarily correlated with exposure to market risk. By adding a
fifth latent factor, the identification of Factor 2 almost uniquely coincides with intermediate momen-
tum r30_14. Similarly, Factor 3 is almost unequivocally correlated with both max7 and max30. With
the exception of turnover and $volume, Factor 4 is primarily correlated with measures value, such as
bm, and size, and growth such as new add and active add. Interestingly, Factor 4 is also “contami-
nated” by measures of past performances. Nevertheless, past performances are more strongly related
to Factor 5. The latter also strongly correlates with measures of volatility, liquidity, and downside

risk, as proxied by VaR (5%).

5 Do equity and cryptos share risk factors?

We expand on our analysis of factor models within cryptocurrency markets by asking whether factors
from cryptocurrency market price equity, and vice-versa. This question builds on previous literature,
including Liu and Tsyvinski (2021) and Bianchi et al. (2022), who emphasize that full market inte-
gration should imply that both markets share the same factors and factor premiums. We leverage the
flexibility of the IPCA approach and test the significance of the additional information content that
equity risk factors brings to explain the common variation in realised and expected cryptocurrency

returns.

We begin by formally testing whether coupling observable equity factors with the latent factors
extracted from the cross section of cryptocurrency returns significantly improves the explanatory
power of the IPCA. We estimate an extended IPCA model as in Eq.(11), with the term 3], f;11 being

the same as in the main IPCA specification. The new term 0} ,g:+1 represents the portion of the return
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variation described by the M x 1 vector of equity risk factors g;y1. For consistency, the loadings on
the equity risk factors d;; = zgth(; are instrumented using the same set of individual cryptocurrency
characteristics z;;, where I's is an L x M mapping from characteristics to loadings. This allows us
to give a more structural interpretation of the integration between the equity and the cryptocurrency
markets to the extent that it actually exists in the data. As a matter of fact, in this setting the betas
on cryptocurrency returns on equity factors take the interpretation of empirical hedge ratios (see, e.g.,

Kelly et al., 2022).

We consider as g1 the Fama and French (2015) five-factor model: the excess return on the market
(MKT), the size factor (SMB), value (HML), profitability (RMW) and the investment factor (CMA).
We follow Kelly et al. (2019) and construct a test of the incremental explanatory power of equity risk
factors after controlling for the baseline IPCA specification. The null hypothesis is Ho : I's = O« s
from which we construct a Wald-like test statistic as W5 = vec (ﬁ;)lvec (fg). Ws measures the
distance between the model with and without the equity risk factors g;1. If Wy is large relatively
to sampling variation, one can conclude that the equity risk factors carry significant information
for the variation of cryptocurrency returns. The sampling variation estimates, and therefore the p-
values, are obtained by using the same wild bootstrap method as in Section 4.1.'* One comment is
in order. Unlike equity, cryptocurrencies are traded on a 24/7 basis. This means that there are some
discrepancies in the numbers of observations between cryptocurrency and equity returns. We match
both samples by indexing to equity dates, that is, for those days for which we do not have equity

returns available, we discard the cryptocurrency returns.

Panel A of Table 14 reports the testing results both when using one factor at a time — considering
separately the contribution of MKT, SMB, HML, RMW, CMA — and when adding each factor cumu-
latively — from a one-factor model (F1) to a five-factor model (F5). Irrespective of being added one
at a time or all of them together, observable equity factors are redundant as we add IPCA factors.
None of the Fama-French factors are statistically significant at conventional levels after controlling

for the commonality in realised individual returns as captured by the IPCA latent factors.

Panel B of Table 14 shows that none of the equity risk factors offer an economically significant

improvement over the IPCA’s total or predictive R?. For instance, by adding the five Fama-French

YMPirst we construct residuals of managed portfolios C,l\H_l = Z{€; ;1 from the estimated model. Then, for each iteration
b, we resample the portfolio returns imposing the null hypothesis I's = 0. Next, for each bootstrap sample, we re-
estimate I's and construct the associated test statistic W2. Finally, we compute the p-value as the fraction of W2 that
exceeds W.
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factors to the baseline IPCA4 model, both the RZ, and the R]%Ted remains virtually unchanged. The

same holds when we use managed portfolios as test assets; the R?Ot,x and Rf, obtained from the

red,r
IPCA4 essentially do not change by adding equity risk factors. Overall, Table 14 suggests that once we
control for IPCA latent factors, the information content of equity risk factors to explain the variation

in realised and expected cryptocurrency returns is negligible.

Overall, by leveraging on the flexibility of the IPCA framework and delving deeper into the system-
atic variation in cryptocurrency returns and the joint factor structure shared by equity and cryptos,
we provide evidence that once we condition for the common variation in individual cryptocurrency
returns, equity risk factors do not bring economically valuable information on both realised and ex-
pected cryptocurrency returns. Our results expand those of some of the previous literature (see, e.g.,
Liu and Tsyvinski, 2021; Bianchi et al., 2022), both by considering the post Covid-19 period and by
studying highly noisy and volatile daily returns. The latter in particular poses a particular challenge
for the latent factor model in extracting fundamental pricing information based on cryptocurrency

characteristics.

5.1 Factors spanning regressions

The relatively low additional information content of equity risk factors when added to IPCA factors
extracted from cryptocurrency returns, does not mean that the two markets are necessarily segmented.
Risk factors can be highly correlated and therefore capture similar sources of risk. We calculate a set
of correlations between the Fama and French (2015) equity factors and the latent factors extracted
from the IPCA on cryptocurrency returns. This provides additional, albeit indirect, evidence on
the similarities and differences in the pricing kernel between cryptocurrencies and equity markets.
Because latent factors can only be identified up to a rotation, we assess the correlations between
crypto and equity factors using a series of spanning regressions, that is, we regress each of the latent

cryptocurrency factors individually on all of the Fama-French equity factors.

The first three columns of Table 15 shows the regression results when the dependent variable is
the first three latent factors obtained from the baseline IPCA4 model. Panel A reports the regression
results for the full sample of observations. With the exception of Factor 1, none of the five Fama-
French factors is statistically significant at the conventional 5% threshold. However, the equity market

factor is indeed significantly correlated with Factor 1, with a spanning regression coefficient that is
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significant at the 1% level. Nevertheless, the constant, meaning the unexplained returns, is strongly

significant for all the three latent factors.

The multiple correlation coefficients (vVR2) is also quite low, 26% for Factor 1 to 5% for Factor
3. Panel B of Table 15 reports the results for the period from March 2020 to the end of the sample.
Although the multiple correlation coefficients increase, the equity market factor remains the only
one significantly correlated with Factor 1. Similar to the full sample, neither Factor 2 nor Factor 3

extracted from the IPCA4 are correlated with conventional Fama-French equity risk factors.

In order to gain a better perspective on the spillover effects between equity and cryptocurrency
markets, we now regress the Fama-French equity risk factors on each one of the observable cryptocur-
rency factors used in the main empirical analysis (see Section 2.2 for a description). The central part
of Table 15 reports the results. Three interesting facts emerge; first, with the exception of the bm
portfolio, the constant, meaning the unexplained returns, is strongly significant for all cryptocurrency
factors. Interestingly, although the intercept for the bm portfolio is not significant, none of the equity
risk factors have significant spanning regression coefficients either. This suggests that bm produces
average returns which are neither correlated with equity risk factors, nor significantly different from

Zero.

Second, the cryptocurrency and equity market factors are positively and significantly correlated.
This confirms the conventional wisdom that the aggregate market trend in both asset classes may be
correlated.’® Related to that, the third fact that emerges from the spanning regressions is that the
correlation between observable equity and cryptocurrency risk factors tend to increase in the second
half of the sample. All of the v/R? increase, with the cryptocurrency market factor now significantly
correlated with the HML portfolio at a 1% level. Nevertheless, and consistent with the IPCA spanning
regressions (first three columns), the correlation between equity and cryptocurrency factors is far from

perfect For instance, with the exception of the mkt factor, all of the v R? are below 20%.

Intuitively, the correlation between IPCA and equity risk factors seem rather small. However, to
quantify what actually “small” means in this setting, one needs to look at the correlation between the
IPCA and the observable cryptocurrency factors. On the one hand, this gives us a benchmark to gauge
the correlation between IPCA and equity factors. On the other hand, this allows us to understand

how much overlap there is in the information content between IPCA and traditional cryptocurrency

'5See for instance https://www.bloomberg.com /news/articles/2022-01-25/bitcoin-is-moving-in-tandem-with-stocks-
like-never-before-chart.
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factors &-la Fama and French. The last three columns of Table 15 report the spanning regression
results where we regress the first three latent factors from an IPCA4 on the seven observable risk

factors used in the main empirical analysis.

Although the regression intercepts are still strongly significant, the multiple correlation coefficients
are much larger compared to the equity risk factors. For instance, the vVR? of the three latent
IPCA factors on all seven observable cryptocurrency portfolios are 82%, 19% and 31%, respectively.
Interestingly, the correlation between IPCA and observable cryptocurrency factors is quite stable
when we focus on the second half of the sample. Despite a higher correlation though, the unexplained
factor returns are still large and significant. This suggests that (1) equity risk factors do not provide
useful information about the latent IPCA factors, and (2) observable cryptocurrency factors do indeed

provide useful information, although they do not span the latent factor space with sufficient accuracy.

Overall, Table 15 provides some insight on the intersection between equity and cryptocurrency
markets. On the one hand, the relatively low correlation between crypto and equity risk factors
that permeats from the regression analysis, suggests that market segmentation may still potentially
represent an impediment to cross-asset fundamental spillovers between equity and cryptocurrencies,
compared to other asset classes such as bond (see, e.g., Kelly et al., 2022), foreign exchange and
commodities (Asness et al., 2013). On the other hand, the presence of a moderate correlation between
markets, as shown for instance by the first IPCA latent factor and the equity market portfolio,
potentially suggests that investors’ hopes on the “diversification” benefits of cryptocurrencies may
have been ill-posed (see, e.g., Baek and Elbeck, 2015; Yermack, 2015; Biais et al., 2020; Liu and

Tsyvinski, 2021).

As a complementary evaluation of the cross-asset pricing performance, in Appendix C we look
at the pricing error on equity portfolios based on a Fama-French five-factor model compared to the
baseline IPCA3 crypto factor model. We measure the extent to which the latent factors from the IPCA
fits on cryptocurrency returns produce comparable average alphas vs. the Fama-French equity factor
model. We consider as test assets 25 portfolios sorted on size and book-to-market as test assets.
Figure C1 shows the results. The average absolute pricing error is 3.4% annualized when we use
the five-factor Fama and French (2015) model. This is almost a tenfold smaller than when we use
the IPCA factors extracted from the cross section of individual cryptocurrency returns: the average

absolute alpha from the IPCA4 is 29.5% annualised. In addition, for the IPCA4 model, the alphas
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are clustered around the 45-degree line, which suggests that the factors extracted from the panel of
cryptocurrency returns do not provide significant pricing information for equity markets. Results are

similar for 25 portfolios sorted by size and momentum (bottom panels).

6 Conclusion

We build upon an instrumented principal component analysis and show that the characteristics/expected
return relationship within the context of cryptocurrency markets is driven by compensation for the
exposure to latent risk factors. Our approach uses both returns and characteristics to jointly estimate
a set of latent factors that better explain the total variation in realised and expected returns. As a
result, our model provides a dynamic characterization of expected returns and risk premiums without
taking a dogmatic stand a priori on (1) which characteristics matter and (2) which test assets should
be used to understand the risks and returns in cryptocurrency markets. We see both these properties

as crucial within the context of this fast growing, and arguably still relatively unknown asset class.

Empirically, we show that a parsimonious IPCA factor model outperforms a benchmark observ-
able risk factors model built upon prior literature. That is, the IPCA explains a larger fraction of
daily realized and expected cryptocurrency returns and yields better predictions that result in smaller
pricing errors. These results hold for both individual asset returns and managed portfolios, during
both pre and post COVID-19 crisis periods, and for weekly aggregation of returns and characteristics.
In addition, by comparing equity and cryptocurrency factors, within a self-contained asset pricing
framework, our results highlight an increasing, although not perfect, correlation between equity and
cryptocurrency risk factors. Nevertheless, conditional on the IPCA factors extracted from cryptocur-
rency returns, none of the standard equity risk factors provide significant information to understand

risk compensation in cryptocurrency markets.
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Table 1: Asset characteristics by category

This table lists 28 characteristics used in our empirical analysis. We group them into four categories: on-chain measures,
trading frictions, past returns, and other. We follow Freyberger et al. (2020) and Liu et al. (2022) in the classification
of characteristics. We report detailed variable definitions in Appendix B. The data are sampled daily from September
1st 2017 to September 1st 2022, where a day is defined with a start time of 00:00:00 UTC. Daily prices and volume are
aggregated across more than 80 different centralised exchanges.

On-chain measures
New addresses: The number of unique addresses that appeared for the first time

1 dd . . . .
M) new & in a transaction of the native coin in the network.
@) active add Active addresses: The number of unique addresses that were active in the network either
as a sender or receiver. Only addresses that were active in successful transactions are counted.
3) - Network-to-market value: The cumulative number of unique addresses

over the current available supply times the current USD price.

Trading frictions
Trading volume: The total amount of coins/tokens transferred across wallets

4 1 i .
) $volume within and across centralised exchanges.

Market capitalization: The market capitalization is defined as the product of the
(5) size current available supply times the current USD price. The current available supply
is calculated as the current supply minus the coins that have been burned.

Realised volatility: The daily realised volatility calculated based on OHLC prices

(©) rvol following the methodology propose by Yang and Zhang (2000).

(1) bidask The bid-ask spread: A daily bid-ask spread calculation based on OHLC prices. It represents
the average of the Abdi and Ranaldo (2017) and Corwin and Schultz (2012) approximations.

®) i1liq Tlliquidity ratio: The ratio between the absolute value of the cumulative intraday returns

and the daily trading volume expressed in $ (see Amihud, 2002).

Capm beta: The market beta calculated based on a 30-day rolling window.
9) capm f3 The market portfolio is calculated as the value-weighted average of the asset returns
available at each day t.

(10) turnover Turnover: the last day trading volume ($volume) over the current available supply.

De-trended turnover: The ratio of daily volume ($volume) to current available supply

11 .
an dto minus the daily market turnover and de-trend by its 180 trading days (see Garfinkel, 2009).

Idiosyncratic volatility: The standard deviation of the residuals from the CAPM based
(12) ivol on a 30-day rolling window. The market portfolio is the value-weighted average
of the asset returns available at each day ¢.

The standard deviation of the residuals from a 30-day rolling window regression

(13) std-to of daily turnover on a constant as in Chordia et al. (2001).

The standard deviation of the residuals from a 30-day rolling window regression

(14) stdvol of daily trading volume ($volume) on a constant as in Chordia et al. (2001).

Closeness to the 90-day high: the ratio of the coin price in $

1 1 to_high . . . .
(15) res-to-nlg at the end of the previous day over the previous 90 day high price.

(16-17) max* Maximum daily return in the previous 7 or 30 days following Bali et al. (2011)

Volume shock: the log deviation of trading volume from its trend estimated over a rolling period
- vol shock * o or ays. The log standard deviation computed over the same rolling window is use
18-19 1 shock *d f 30 or 60 d The log standard deviati ted th 11i indow i d
to standardise the estimates due to cross-sectional imbalances (see Babiak et al., 2022).

Past returns
(20) 2.1 Short-term reversal as in Jegadeesh (1990).

(21-24) rx_1 Cumulative return from 7, 14, 22, and 31 days before the return prediction to one day before.

We define intermediate momentum as the cumulative returns from 30 days before

.
(25) r30-14 prediction to 14 days before.

We define long-term reversal is the cumulative return from 180 days before

2 180_
(26) r180-60 the return prediction to 60 days before.

Other
(27) capm « The excess return from a CAPM calculated based on a 30-day rolling window.
(28) VaR (5%) The historical Value-at-Risk at 5% calculated based on past 90-day returns.
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Table 2: Descriptive statistics for asset characteristics

This table reports summary statistics for characteristics and return predictors. For each variable, we report the cross-
sectional mean, median, standard deviation and relevant percentiles of the distribution of individual time-series averages.
The data are sampled daily from September 1st 2017 to September 1st 2022, where a day is defined with a start time
of 00:00:00 UTC. Daily prices and volume are aggregated across more than 80 different centralised exchanges.

Percentiles

Obs. Mean Median Std 1 5 25 75 95 99
On-chain measures
new add 609,399 1616.08 6.73 17931.73 1.06 1.61 3.45 17.00 190.73 34786.19
active add 609,399 3674.60 24.32  39004.67 2.15 4.59 12.23 65.62 540.78 66690.87
bm 590,652 1.13 0.012 21.55 0.001 0.001 0.011 0.021 0.152 0.531
Trading frictions
$volume ($mln) 541,129 3.72 0.06 33.06 0.00 0.00 0.01 0.34 4.24 55.75
size 590,652 16.17 16.04 2.18 11.24 1287 14.67 17.42 19.81 22.56
rvol (%) 595,224 15.05 12.12 12.85 5.02 6.55 9.55 17.33  31.95 49.45
bidask (%) 609,399 8.28 7.66 4.22 2.87 4.07 599 9.73  14.09 19.81
illiq 459,840 50.68 3.81 185.80 0.00 0.04 0.67 25.61 236.70 526.31
capm [ 597,549 0.93 0.98 0.21 0.20 0.45 0.85 1.06 1.17 1.29
turnover (%) 530,054 6.56 0.42 77.65 0.00 0.02 0.11 1.28 6.85 110.87
dto 353,936 -0.26 0.05 8.58 -25.18 -0.31 -0.01 0.22 1.88 11.13
ivol (%) 597,549 9.17 7.94 4.63 2.70 3.95 5.94 11.49 19.18 23.49
std_to 531,011 0.09 0.01 0.65 0.00 0.00 0.00 0.01 0.10 2.24
std_vol 542,080 1.29 1.23 0.50 0.49 0.63 0.88 1.66 2.05 2.85
rel_to high (%) 574,244 56.37 55.76 890 33.84 42.64 50.83 61.57 70.34 80.66
max7 (%) 607,029 13.10 11.45 5.87 5.48 7.12 9.27 15.52  25.69 33.78
max30 (%) 597,944 25.32 22.21 11.36  10.00 12.98 17.67 31.11  48.49 65.26
vol shock 30d 462,699 -0.07 -0.07 0.08 -0.32 -0.19 -0.11 -0.03 0.03 0.11
vol shock 60d 434,558 -0.11 -0.10 0.18 -0.61 -0.32 -0.16 -0.04 0.08 0.23
Past returns
2.1 (%) 609,398 -0.20 -0.23 0.26 -0.67 -0.52 -0.35 -0.07 0.19 0.54
71 (%) 607,029 -0.78 -0.95 1.71  -3.78 -2.63 -1.73 -0.24 1.56 7.10
r14.1 (%) 604,659 -1.34 -1.76 3.61 -7.27 -515 -3.25 -0.40 3.84 14.02
221 (%) 601,104 -2.00 -3.06 6.68 -11.91 -890 -5.30 -0.49 7.25 27.13
r31.1 (%) 597,549 -2.44 -4.06 10.04 -17.03 -12.48 -7.18 -0.15 11.79 45.87
r30-14 (%) 597,549 -1.79 -2.64 5.72 -10.22 -7.70 -4.62 -0.48 6.10 23.32
r180.60 (%) 538,694 -3.74 -11.78 53.80 -71.02 -51.40 -27.08 7.16 57.46 261.76
Other
capm « (%) 597,549 -0.10 -0.14 0.33 -0.56 -0.44 -0.24 -0.03 0.28 1.51
VaR(5%) (%) 574,244 16.70 14.62 7.17 7.27 9.07 11.85 19.75  31.59 38.69
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Table 3: Observable risk factors

This table reports descriptive statistics including the mean, standard deviation, Sharpe ratio (annualised), Sortino ratio
(annualised), and skewness of the daily returns of portfolios used as a proxy of sources of systematic risks. We report
detailed description of each long-short strategy in Section 2.2. The data are sampled daily from September 1st 2017 to
September 1st 2022, where a day is defined with a start time of 00:00:00 UTC. Daily prices and volume are aggregated
across more than 80 different centralised exchanges.

Liquidity Volatility Past returns On-chain activity
mkt size bidask illiq rvol ivol r2.1 ri141 r221 r31.1 max7 max30 bm new active
Mean (%) 0.13 -0.63 -0.84  -0.70 -0.87 -1.05 0.04 0.20 0.13 0.04 -1.34 -1.21 0.20  0.09 0.34
Std (%) 4.32  3.09 9.02 6.33 8.11 8.84 7.13 6.63 6.37 6.18 7.82 8.42 4.60 5.24 4.92
SR (annual)  0.57 -3.90 -1.78  -2.10 -2.06 -2.26 0.10 0.57 0.40 0.12 -3.27 -2.76 0.82 0.32 1.31
Sortino 0.83 -6.03 -3.07  -3.69 -3.56  -3.91 0.16 0.90 0.62 0.18 -5.75  -4.75 141 041 1.77
Skew -1.18  -0.30 -0.08 1.03 -0.13  -0.30 -0.61  -0.50 -0.39 -049 -0.37 -0.55 1.03 -2.97 -1.05

Table 4: Characteristics, returns, and market betas

This table reports the estimated coefficients from a series of panel regressions of individual returns (Panel A) and market
betas (Panel B) on 28 characteristics used in the main empirical analysis. We report estimates, robust standard errors,
and corresponding p-values. A full description of characteristics and returns is provided in Section 2.1. The data are
sampled daily from September 1st 2017 to September 1st 2022, where a day is defined with a start time of 00:00:00
UTC. Daily prices and volume are aggregated across more than 80 different centralised exchanges. We label with ***,
** * those coefficients significant at a 1%, 5%, and 10% confidence level.

Characteristic Panel A: Realised returns Panel B: Market 3
Pooled OLS Fixed effects Fixed effects

Estimate Std. Error Pr(> [t]) Estimate Std. Error Pr(> [¢|) Estimate Std. Error Pr(> [t|)
new add -0.019 0.023 0.397 -0.033 0.025 0.182 -0.003 0.012 0.826
active add 0.007 0.025 0.780 -0.016 0.030 0.592 0.000 0.016 0.995
$volume -0.024 0.023 0.300 -0.043 0.029 0.145 0.129 0.019 0.000 ***
illiq -0.075 0.012 0.000 R 0.065 0.012 0.000 ok 0.028 0.008 0.001  ***
bidask -0.035 0.011 0.001 R 0.025 0.011 0.024 ok 0.006 0.006 0.359
size 0.046 0.015 0.002 * 0.022 0.014 0.100 -0.019 0.012 0.111
bm -0.038 0.019 0.044 ok -0.148 0.044 0.001 oAk -0.080 0.036 0.027 **
turnover 0.045 0.013 0.001 ok 0.093 0.038 0.015 ok -0.108 0.032 0.001  ***
dto -0.003 0.022 0.896 0.012 0.027 0.646 -0.056 0.017 0.001 ***
max7 0.005 0.005 0.374 0.005 0.006 0.395 -0.011 0.005 0.020 **
max30 -0.021 0.010 0.043 ok -0.027 0.010 0.009 ok 0.059 0.006 0.000 ***
rel to high -0.024 0.014 0.080 * -0.025 0.014 0.075 * 0.062 0.010 0.000
vol shock 30d  -0.036 0.014 0.010 ok -0.027 0.014 0.046 -0.034 0.009 0.000
vol shock 60d  0.014 0.013 0.277 0.010 0.013 0.446 -0.023 0.007 0.001  ***
capm o -0.032 0.014 0.021 -0.025 0.014 0.070 0.013 0.008 0.108
capm (3 0.046 0.016 0.003 HoHK 0.043 0.016 0.007 ok
rvol -0.018 0.009 0.051 ok -0.015 0.010 0.116 0.000 0.011 0.993
ivol 0.038 0.018 0.034 ok 0.048 0.019 0.011 ok -0.091 0.015 0.000 ***
VaR 57 0.008 0.016 0.612 0.012 0.015 0.438 0.074 0.011 0.000 *H*
2.1 -0.028 0.010 0.003 Rk .0.029 0.010 0.003 Ak 0.003 0.001 0.008  ***
7.1 0.015 0.011 0.154 0.014 0.010 0.163 -0.017 0.003 0.000 ***
ri4 1 0.048 0.014 0.001 HoxK 0.044 0.014 0.001 ok -0.005 0.003 0.112
r22.1 0.024 0.015 0.111 0.021 0.015 0.154 -0.005 0.003 0.148
r31.1 -0.104 0.026 0.000 R 0.102 0.026 0.000 ok 0.008 0.012 0.491
r30_14 0.079 0.018 0.000 ook 0.072 0.018 0.000 ook -0.001 0.005 0.845
r180_60 0.036 0.010 0.000 ook 0.023 0.008 0.006 ook 0.008 0.006 0.174
std_to -0.065 0.017 0.000 Rk 0.061 0.017 0.000 Ak 0.020 0.012 0.099 *
std_vol 0.000 0.009 0.976 0.006 0.010 0.584 -0.021 0.010 0.031
dej(%) 0.063 0.077 1.298
Obs. 594,837 594,837 583,382
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Table 5: In-sample asset pricing performance

This table reports a series of asset pricing performance measures outlined in Section 3. Panel A reports the performance
of the restricted (I'a = 0) IPCA and standard PCA models with K = 1,...,7 latent factors. In addition, we report the
values of Bai and Ng (2002) information criteria for each specification of latent factor models as well as the p-values
for the test of 'y = 0 for IPCA based on a wild bootstrap with 10,000 draws.
of observable factor models including one through six portfolios. The models with observable factors are estimated
using standard static time series regressions (labelled as FFl) or using the IPCA methodology where the loadings are
dynamic by instrumenting with characteristics (labelled as IFFl). The data are sampled daily from September 1st 2017
to September 1st 2022, where a day is defined with a start time of 00:00:00 UTC. Daily prices and volume are aggregated
across more than 80 different centralised exchanges.

Panel A: Latent factors

Panel B reports the performance

IPCA PCA
IPCA1 1IPCA2 1IPCA3 1IPCA4 1IPCA5 1IPCA6 1IPCA7 PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7
R2, (%) 11.07 12.01 12.74 13.37 13.98 14.50 15.08 10.95 12.95 14.52 16.06 17.45 18.69 19.82
Rired (%) 0.00 0.15 0.31 0.32 0.33 0.33 0.33 0.00 0.02 0.02 004 0.06 0.06 0.06
R (%) 18.61 18.89 19.14 19.39 19.51 19.63 19.69 18.94 19.30 19.69 20.12 20.54 20.92 21.27
R%, (%) 8.98 9.85 10.63 11.32 11.96 12.52 13.13 8.59 10.33 11.75 13.14 14.42 15.59 16.63
Rfol,z (%) 16.76 33.72 43.36 51.91 53.57 56.51 58.38 13.64 14.27 14.44 16.92 1748 17.81 18.32
R?)red,a‘, (%) 0.03 0.49 2.01 1.93 1.96 1.95 1.95 0.01 0.10 0.12 037 041 0.45 0.47
RLZSA’Z (%) 8.18 2642 36.53 45.16 46.91 49.90 51.94 575 6.43 6.60 9.33 991 10.27 10.82
ng (%) 12.34  25.14 3492 43.25 4517 48.62 50.45 10.60 10.87 10.95 12.21 12.47 12.62 13.00
RPE 99.48  84.03 6.43 6.66 5.86 4.70 4.91 99.52 95.55 94.67 83.02 81.00 79.43 78.42
1C -7.47  -758 -7.62 -7.67 -7.58 -7.53 -7.46 -6.73 -6.74 -6.74 -6.77 -6.77 -6.78 -6.78
Hy:To =0 (pval) 0.00 0.00 0.00 0.02 0.07 0.98 0.96
Panel B: Observable factors
Static loadings Instrumented loadings
FF1 FF2 FF3 FF4 FF5 FF6 FF7 IFF1 IFF2 IFF3 1IFF4 1IFF5 IFF6 IFF7
R%, (%) 9.53 10.26 10.37 10.52 10.67 10.79 10.87 9.29 9.97 10.05 10.08 10.16 10.20 10.23
Rzmd (%) -0.01 -0.04 -0.03 -0.03 -0.03 -0.02 -0.02 -0.01 -0.01 -0.01 0.00 0.02 0.03 0.05
R?; (%) 16.79 17.48 17.64 1791 18.10 18.22 18.30 15.95 16.51 16.66 16.73 16.85 16.87 16.90
RZS (%) 725 8.03 812 829 843 853 8.60 711 783 792 796 804 808 8.11
R?Om (%) 11.71 16.46 17.77 18.12 18.82 19.21 19.47 13.12 18.29 19.91 20.13 20.89 21.40 21.76
QTed_z (%) -0.05 0.41 040 043 059 0.67 0.79 -0.06 049 049 051 068 0.75 0.88
Ry » (%) 453 9.18 10.48 10.88 11.67 12.07 12.34 5.97 11.08 12.73 12.96 13.81 14.34 14.72
st,z (%) 8.46 12.06 12.33 12.50 12.75 12.80 12.90 9.35 12.96 13.56 13.72 14.03 14.35 14.54
RPE 102.15 81.11 81.61 80.22 72.82 69.08 63.53 101.63 79.51 80.10 79.42 7258 69.80 64.63
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Table 6: Out-of-sample asset pricing performance

This table reports a series of out-of-sample asset pricing performance measures outlined in Section 3. Panel A reports
the performance of the restricted (I'a = 0) IPCA and standard PCA models with K = 1,...,7 latent factors. Panel B
reports the performance of observable factor models including one through six portfolios. The models with observable
factors are estimated using standard static time series regressions (labelled as FFI) or using the IPCA methodology
where the loadings are dynamic by instrumenting with characteristics (labelled as IFFl). The data are sampled daily
from September 1st 2017 to September 1st 2022, where a day is defined with a start time of 00:00:00 UTC. Daily prices
and volume are aggregated across more than 80 different centralised exchanges. Recursive forecasts are carried out by
expanding the window of observations starting from March 2nd 2020.

Panel A: Latent factors

IPCA PCA
IPCA1 TIPCA2 1IPCA3 1IPCA4 TIPCA5 TIPCA6 IPCA7 PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7
Rt20t (%) 9.25 10.22 1091 1149 12.09 12.55 13.02 9.30 11.11 1231 13.62 14.69 15.74 16.77
R]%Tcd (%) -0.04 0.28 0.30 0.30 0.30 0.30 0.30 -0.04 -0.03 -0.03 0.01 0.01 0.03 0.03
R?S (%) 19.92 2044 20.24 20.34 2049 20.59 20.52 21.24 21.34 21.55 21.79 22.01 2259 22.29
R% (%) 6.22 7.18 7.88 8.47 9.07 9.55  10.04 6.28 817 936 10.69 11.77 12.77 13.79
thot’z (%) 1595 3040 4492 52.75 55.76 58.73 61.16 13.12 13,50 13.39 15.20 16.14 17.40 17.76
R0, (%) 000 289 229 220 228 225 221 0.02 002 006 033 040 047 0.49
Rf?s,x (%) 9.27 2382 38.61 46.23 49.19 52.03 54.39 6.56 697 6.84 874 9.69 11.056 11.45
st’m (%) 10.21  21.15 34.13 4190 4476 48.04 50.70 8.86 891 861 936 9.75 10.44 11.08
RPE 101.35 15.39 13.09 10.92 10.16 10.78 10.72 101.99 99.23 98.81 85.34 80.34 74.58 73.97
1C -743 -750 -761 -7.65 -7.59 -7.54 -7.49 -7.39 -7.28 -7.16 -7.06 -6.95 -6.85 -6.74
Panel B: Observable factors
Static loadings Instrumented loadings
FF1 FF2 FF3 FF4 FF5 FF6 FF7 IFF1 IFF2 IFF3 1IFF4 IFF5 IFF6 IFF7
RZ, (%) 795 826 824 817 814 807 7.99 7.88 835 841 838 845 848 8.50
R2 (%) 0.00 002 0.02 0.02 0.02 002 0.02 0.01 004 0.05 0.05 0.07 007 0.09
R?s (%) 19.36  19.20 19.13 19.09 19.08 18.97 18.82 19.03 18.95 19.06 18.99 19.08 19.12 19.08
R2 (%) 506 535 532 526 520 511 5.02 499 545 549 547 552 555 557
R . (%) 10.82 17.04 18.18 18.03 18.61 19.04 19.13 12.72 19.66 20.99 20.75 21.54 22.01 22.23
Rfmd’z (%) -0.04 060 0.61 067 078 083 0.95 -0.09 071 0.74 0.80 095 0.99 1.14
R, (%) 5.06 11.30 1240 12.23 12.88 13.29 13.38 6.96 1391 15.21 14.95 15.82 16.27 16.49
Rfsyz (%) 6.93 11.63 11.73 11.56 11.57 12.37 12.31 7.81 12.82 13.00 12.82 12.75 13.61 13.53
RPE 100.88 72.04 71.66 71.55 68.28 66.07 63.32 100.72  66.24 65.59 65.79 61.99 60.20 57.33
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Table 7: Managed portfolio alphas

This table reports the daily and weekly alphas of managed portfolios based on the restricted (I'o = 0) IPCA model with
K = 4 latent factors (IPCA4), a static latent factor model with seven factors (PCA7), and the observable factor model
including seven portfolios with static (FF7) or instrumented (IFF7) betas. For the conditional IPCA and the observable
factor model with instruments, the portfolio alphas are obtained as time-series averages of the period-by-period model
residuals. For the static observable and latent factor, the portfolio alphas are obtained as intercepts from a time series
regression of portfolio returns on the observable factors. Absolute portfolio alphas with t-statistics greater than 3.0 are
highlighted in green print. The data are sampled daily from September 1st 2017 to September 1st 2022, where a day
is defined with a start time of 00:00:00 UTC. Daily prices and volume are aggregated across more than 80 different
centralised exchanges.

Panel A: Daily returns Panel B: Weekly returns

IPCA4 PCA7 FF7 IFF7 IPCA4 PCA7 FF7 IFF7

a (%) t-stat « (%) t-stat « (%) t-stat o (%) t-stat a (%) t-stat « (%) t-stat « (%) t-stat o (%) t-stat

new add -0.08  -0.82 0.36  3.29 0.44 391 0.29 293 -1.85 -1.15 -0.17 -0.12 6.36  3.87 6.40  4.04
active add -0.10  -1.12 0.39  3.56 0.45  4.14 0.33  3.36 -1.80  -1.93 034 0.25 6.93 4.18 6.99  4.69
$volume 0.03  0.49 1.11  6.66 1.13  6.98 0.85  6.44 -2.92  -3.14 332 246 1150 5.14 10.59  4.58
illiq 0.07 070 -0.06 -0.45 -0.06 -0.52 -0.14 -1.47 -2.83  -1.40 2.06 1.08 279 239 2.56 1.90
bid-ask 031  3.21 0.31 2.58 027 231 0.11 1.14 -3.59  -1.78  -0.23 -0.13 2.63 1.50 2.41 1.25
size 0.08  1.00 1.37 12.34 1.17  10.16 0.89  9.87 -0.91  -0.93 6.56 413 11.13 4.64 1020 5.98
bm 0.27 239 1.73  14.70 1.56 12.51 1.22  11.54 1.15  0.81 8.02 330 1279 528 10.59  5.39
turnover -0.10  -1.30 0.76  4.88 0.89  5.86 0.67  4.78 -2.48  -1.93 3.91 216 12,63 394 10.57  3.27
dto 0.03  0.25 0.38  3.51 0.37 391 0.33  3.39 0.13  0.10 234 1.08 3.07  1.36 1.36  0.67
max7 023 5.74 1.93 13.56 1.88 15.01 1.84 16.30 -4.06 -2.30 -4.66 -1.60 1.92  0.61 1.34 045
max30 -0.02  -0.26 0.38  2.51 032 234 045  4.05 -3.76 -1.08 -1.10 -0.33 7.21 1.73 593  1.55
rel_to_high 0.28  3.18 0.60  6.14 0.52  5.10 041  4.08 1.66  1.56 7.06 232 518 251 4.90 244
vol shock 30d 047  4.02 1.21 945 1.19  9.42 1.14  9.54 -0.93  -0.75 0.29 0.14 1.96  0.89 1.71  0.72
vol shock 60d 0.39  3.62 1.10  9.63 1.08  9.17 1.04  9.67 -0.11  -0.09 2.85 1.13 5.23 1.99 4.58 1.72
capm « 022 288 0.25  2.05 0.17  1.51 0.15 1.36 -2.72 -1.74 -546 -143 3.55 1.00 225  0.63
capm f3 0.34 3.61 024 244 0.25  2.58 021 227 -0.95  -0.82 217 0.71 4.99 292 3.08 178
rvol 0.13  1.65 0.30  1.90 0.28  2.06 0.15  1.26 -2.90  -1.54 280 1.03 11.70 3.08 10.10 2.85
ivol 0.07 091 028 1.78 0.28  2.07 0.10 091 -3.63  -1.88 1.84 056 1024 261 8.80  2.36
VaR(5%) 0.21 2.92 0.55  3.96 0.51  4.34 0.30  2.93 -1.97  -1.24 6.38 246 1224  3.67 11.17  3.60
r2.1 -0.28  -3.24 0.61 5.88 0.57  5.20 0.60  6.21 6.85 3.68 27.04 916 2340 885 2131 9.69
r71 0.16 235 0.51 492 0.38  3.86 046  4.96

ri41 0.02 0.34 0.38  3.65 022 210 0.32  3.26 5537 194 2144 10.65 1531 519 1471  5.75
r22.1 0.03  0.43 032 297 024 233 0.29  3.06 5.81 3.40 20.01 955 14.07 542 13.68  5.60
r31.1 0.23  3.10 0.27  2.16 0.16 1.37 0.20 1.86 559 316 1940 8.06 12.60 486 1236 4.94
r30_14 -0.32 -3.33 0.35  2.65 043  3.12 0.39  3.11 -1.85  -1.23  -2.15  -0.65 5.63 1.70 414 115
r180_60 012 1.08 028 229 037 281 0.39  3.35 -0.59  -0.56 0.59  0.23 7.68 237 6.64  1.86
std_to -0.17  -1.83 0.38  3.60 0.55  5.52 048  5.09 -1.52 -1.58 3.60 216 1098  5.05 9.60  4.84
std_vol 0.00 -0.04 014 1.14 0.18 1.39 0.04 0.44 -3.09  -1.18 1.73  0.53 6.04 1.75 4.86 1.62
Avg. |a| 0.17 0.59 0.57 0.49 2.86 5.83 8.51 7.51
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Table 12: Testing the significance individual characteristics

This table reports p-values from the bootstrap test for the significance of individual characteristics in the restricted
(T'a = 0) IPCA specifications. The IPCAIl label identifies an IPCA model with [ latent factors. We report the results
for the full sample — from September 1st 2017 to September 1st 2022 —, the sub-sample separation before and after
March 2nd 2020, and the weekly aggregation of the returns. A full description of characteristics and returns is provided
in Section 2.1. The significance of the characteristics is color-coded from red (non-significant) to green (significant at

conventional levels).

Full sample 1st sub-sample 2nd sub-sample Weekly

IPCA2 TIPCA3 TIPCA4 TIPCA5 TIPCA6 IPCA3 IPCA4 IPCA3 IPCA4 IPCA2 TIPCA3
new add 0.387 0.195 0.399 0.152  0.338 0.374  0.403 0.306  0.575
active add 0.236  0.277  0.526 0.551  0.636 0.316  0.527
$volume 0.105 0.091 0.081 0.161 0.382 0.096 0.048  0.041
illiq 0.042  0.040
bidask 0.059 0.039 0.092 0.202 0.372 0.075
size 0.057 0.041 0.117 0.244 0471
bm 0.172 0.092 0.305 0.446 0.582 0.444
turnover 0.275 0.149 0.241 0.271  0.552 0.494
dto 0.473 0.412
max7 0.458 0.151  0.362
max30 0.425 0.310
rel_to_high 0.301 0.476 -
vol shock 30d 0.255 0.078 0.171
vol shock 60d = 0.592 0.166  0.391
capm « 0.441  0.438
capm [
ivol 0.041 0.426  0.143
VaR (5%) 0.189  0.483 0.124 0.156  0.348
r2.1 0.281 0.088 0.288  0.605 0.342
r7.1 0.231 0.197 0.048 0.081 0.043 0.179  0.113 0.099
ri4a.1 0.247 0.187 0419 0422 0.304 0.505 0.255  0.476 J
r22_1 0.321 0.115 0.173 0.441 0.292 0.553 0.243 0.127 0.124 0.510 0.437
r31.1 0.523 0.091 0.042
r30_14 0.143 0.089 0.213 0.603 0.115 0.389  0.262
r180_60 0.179 0.097 0.186 0.316 0.478 0.212  0.579 0.091 0.194
std_to 0.232  0.109 F 0.505 0712 0.889
std_vol 0.249 0.176 0.049 0.116 0.375 0.182  0.285




Table 13: IPCA and observable cryptocurrency factors

Panel A of the table reports the test results for the null hypothesis that I's = 0 on the instrumented loadings of the
observable risk factors (see Eq.11). We report the test results for both a single equity factor at a time, and jointly from
one (FF1) to seven (FF7) observable risk factors. Panel B reports the total and predictive R*> obtained when adding
the observable cryptocurrency factors to different IPCA specifications. The full sample is from September 1st 2017 to
September 1st 2022.

Panel A: Testing the significance of additional observable factors

Individual testing Joint testing
mkt size 1221 bm bidask rvol max7 FF1 FF2 FF3 FF4 FFb5 FF6 FF7
IPCA1 0.14 020 032 0.31 0.33 0.06 0.02 0.06 0.00 0.08 0.09 0.00 0.00 0.00
IPCA2 0.56 0.8 0.65 0.57 0.37 049 0.02 045 0.02 0.09 0.28 0.00 0.00 0.01
IPCA3 0.14 0.11 041 0.23 021 0.17 0.1 0.04 0.04 0.11 0.22 0.01 0.00 0.78
IPCA4 0.02 0.00 019 0.11 0.13 0.04 0.99 0.00 0.14 0.08 0.24 0.11 0.00 0.77
IPCA5 0.02 0.21 0.67 0.07 0.08 0.06 0.98 0.00 0.97 0.32 0.06 0.11 0.00 0.97

Panel B: IPCA explanatory power with the inclusion of additional factors

Ig?ot 1{2

pred

FFO FF1 FF2 FF3 FF4 FF5 FF6 FF7 FFO FF1 FF2 FF3 FF4 FFb FF6 FF7

IPCA1 11.07 11.21 11.54 11.58 11.60 11.63 11.65 11.68 0.00 0.02 0.17 0.17 0.17 0.17 0.17 0.18
IPCA2 12.01 12.15 1229 12.32 12.34 12.36 12.38 12.40 0.15 0.17 0.18 0.18 0.18 0.17 0.17 0.18
IPCA3 12.74 12.84 1295 1297 12.99 13.02 13.03 13.05 0.31 031 0.27 028 028 0.28 0.28 0.26
IPCA4 13.37 13.46 13.56 13.58 13.60 13.62 13.64 13.65 0.32 033 031 031 031 031 031 0.29
IPCAS 13.98 14.07 14.15 14.17 14.18 14.21 14.22 14.23 0.33 033 032 032 032 032 032 0.32

2 2
Rtot,:l; Rp're(i,.’l;
FFO FF1 FF2 FF3 FF4 FF5 FF6 FF7 FFO FF1 FF2 FF3 FF4 FF5 FF6 FF7

IPCA1 16.76 20.06 26.50 27.76 27.88 28.21 28.52 28.88 0.03 0.16 1.53 155 1.54 155 1.55 1.61
IPCA2 33.72 37.02 41.62 42.08 42.19 42.30 42.24 42.16 049 0.76 1.64 1.64 164 163 1.63 1.65
IPCA3 43.36 46.09 44.81 45.09 45.19 45.41 45.38 45.73 2.01 2.00 194 194 193 193 193 193
IPCA4 51.91 52.56 50.55 50.59 50.68 50.89 50.91 51.21 193 193 179 177 1.77 177 1.76 1.77
IPCA5 53.57 54.62 53.27 53.15 53.19 53.37 53.39 5347 196 195 1.90 1.88 1.88 1.88 1.88 1.87
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Panel A of the table reports the test results for the null hypothesis that I's = 0 on the instrumented loadings (see
Eq.11) of the equity risk factors from Fama and French (2012). We report the test results for both a single equity
factor at a time, and jointly from one (F1) to five (F5) equity risk factors. Panel B reports the total and predictive R?
obtained when adding the equity factors to different IPCA specifications. The full sample is from September 1st 2017

Table 14: The additional information content of equity risk factors

to September 1st 2022.

Panel A: Testing the significance of additional observable factors

Individual testing

Joint testing

MKT SMB HML RMW CMA F1 F2 F3 F4 F5
IPCA1 0.530 0.480 0.630 0.910 0.690 0.640 0.270 0.720 0.950 0.760
IPCA2 0.430 0.510 0.410 0.920 0.540 0.570 0.350 0.610 0.970 0.820
IPCA3 0.280 0.500 0.280 0.830 0.570 0.450 0.370 0.590 0.950 0.820
IPCA4 0.260 0.390 0.210 0.760 0.510 0.410 0.270 0.350 0.840 0.660
IPCAS 0.290 0.340 0.240 0.680  0.480 0.560 0.250 0.320 0.780 0.490
Panel B: IPCA explanatory power with additional factors
Rt20t Rzz)red
FO F1 F2 F3 F4 F5 FO F1 F2 F3 F4 F5
IPCA1 12.621 12.601 12.611 12.622 12.630 12.641 0.001 0.013 0.013 0.013 0.013 0.015
IPCA2 13.546 13.527 13.536 13.547 13.555 13.564 0.151 0.142 0.142 0.142 0.143 0.142
IPCA3 14.273 14.255 14.264 14.274 14.282 14.290 0.313 0.331 0.331 0.331 0.332 0.332
IPCA4 14.917 14.899 14.907 14.918 14.925 14.934 0.324 0.338 0.338 0.338 0.338 0.338
IPCA5 15.519 15.502 15.510 15.520 15.527 15.537 0.327 0.339 0.339 0.339 0.339 0.339
Rt20t R?)red
FO F1 F2 F3 F4 F5 FO F1 F2 F3 F4 F5
IPCA1 18.989 18.837 18.921 19.014 19.072 19.101 0.027 0.085 0.085 0.084 0.077 0.082
IPCA2 36.790 36.665 36.736 36.795 36.839 36.916 0.493 0.306 0.310 0.313 0.307 0.310
IPCA3 44.762 44.652 44.750 44.748 44.814 44.846 2.011 2.127 2.132 2.129 2.130 2.130
IPCA4 53.638 53.644 53.681 53.643 53.614 53.610 1.929 2.027 2.031 2.028 2.028 2.027
IPCA5 55.429 55.388 55.442 55.449 55.435 55.431 1.959 2.031 2.034 2.031 2.030 2.031
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Figure 1: A first look at the data

This figure provides a snapshot of the sample used in the main empirical analysis. The left panel compare the market
capitalization of cryptocurrencies in our sample and the total market capitalization. The right panels illustrate the
time-series and cross-sectional dimensions of the panel of the returns.
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Figure 2: Alphas of managed portfolios

This figure shows the alphas of managed portfolios based on the set of factors from the restricted (I'a = 0) IPCA model
with K = 4 factors, a static principal component analysis with K = 7 (PCA7), and an instrumented factor model with
K =7 observable factor portfolios (IFF7). For the IPCA4 and IFF7 models the alphas are computed as the time-series
average of the period-by-period portfolios residuals. For the static PCA7 the alphas are computed as intercepts from
time series regressions of portfolio returns on the latent or observable factors. All portfolios are re-leveraged to yield 5%
daily volatility, consistent with the historical volatility of long-short portfolios. Significant alphas with absolute values
of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas are denoted with unfilled
circles. All reported values are daily and expressed in percentage.
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Figure 3: Alphas of double-sorted portfolios

This figure shows the alphas of 25 portfolios sorted on size vs r21_1, bm or max7 based on the set of factors from the
restricted (I'a = 0) IPCA model with K = 4 factors, a static principal component analysis with K = 7 (PCA7), and an
instrumented factor model with K = 7 observable factor portfolios (IFF7). For the IPCA4 and IFF7 models the alphas
are computed as the time-series average of the period-by-period portfolios residuals. For the static PCA7 the alphas are
computed as intercepts from time series regressions of portfolio returns on the latent or observable factors. All portfolios
are re-leveraged to yield 5% daily volatility, consistent with the historical volatility of long-short portfolios. Significant
alphas with absolute values of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas
are denoted with unfilled circles. All reported values are daily and expressed in percentage.
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Figure 4: Alphas of managed portfolios across sub-samples

This figure shows the alphas of managed portfolios based on the set of factors from the restricted (I'a = 0) IPCA model
with K = 4 factors, a static principal component analysis with K = 7 (PCA7), and an instrumented factor model with
K = 7 observable factor portfolios (IFF7). Panel A shows the results for the first sub-sample from September 1st 2017
to March 1st 2020. Panel B shows the results for the second sub-sample from March 2nd 2020 to September 1st 2022.
For the IPCA4 and IFF7 models the alphas are computed as the time-series average of the period-by-period portfolios
residuals. For the static PCA7 the alphas are computed as intercepts from time series regressions of portfolio returns on
the latent or observable factors. All portfolios are re-leveraged to yield 5% daily volatility, consistent with the historical
volatility of long-short portfolios. Significant alphas with absolute values of t-statistics greater than 2.0 are depicted with
filled diamonds, while insignificant alphas are denoted with unfilled circles. All reported values are daily and expressed

in percentage.
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Figure 5: Alphas of managed portfolios based on weekly returns

This figure shows the alphas of managed portfolios for the weekly returns. The alphas are calculated from the restricted
(T'a = 0) IPCA model with K = 4 factors, a static principal component analysis with K = 7 (PCA7), and an instrumented
factor model with K = 7 observable factor portfolios (IFF7). For the IPCA4 and IFF7 models the alphas are computed
as the time-series average of the period-by-period portfolios residuals. For the static PCA7 the alphas are computed
as intercepts from time series regressions of portfolio returns on the latent or observable factors. All portfolios are
re-leveraged to yield 25% weekly volatility, consistent with the historical volatility of long-short portfolios. Significant
alphas with absolute values of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas

are denoted with unfilled circles. All reported values are weekly and expressed in percentage.
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Figure 6: Marginal R? for IPCA factors

This figure shows the marginal R? of a set of auxiliary regressions in which the dependent variable is a given latent factor
from an TPCA model, and the independent variables are the estimated managed portfolios for all 28 characteristics. The

figure reports the results for different IPCA specifications with K = 2, 3,4, 5 latent factors.
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Internet Appendix to

A risk-based explanation of cryptocurrency returns

A Data cleaning

This Appendix describes the procedure related to sourcing, cleaning, and preparing the cryptocurrency database.

The main results of the paper rely on two cryptocurrency databases.

A.1 Original sources

1. The CryptoCompare database is used to download aggregated and exchange level OHLC pricing and
volume cryptocurrency data each day, where a day is defined with a start time of 00:00:00 UTC. We set
tryConversion to ‘true’ and the tsym parameter to ‘USD’ for the regression and aggregated data-based
portfolio sorts. We set tsym to ‘USDT’ and tryConversion to ‘false’ for the exchange-level portfolio sort
robustness results.

2. The IntoTheBlock.com database, which is used to source information on blockchain activity, such as the
number of new addresses and the number of active unique addresses. The day ‘start time’ is also set to
be exactly 00:00:00 UTC.

A.2 Data pre-processing

We only retain cryptocurrency pairs if they have all available data from CryptoCompare and CoinGecko after

merging. We consider a variety of pre-processing steps for a cryptocurrency to be included in the sample:

1. Non-zero price and volume: we exclude any pair that had zero traded volume or a zero price for any
day t.

2. Volume-to-market-capitalization: we compute, for each pair and day t, the ratio of cryptocurrency
traded volume to market capitalization and exclude any pair with a ratio > 1. This is a simple filter to
screen out pairs with ‘erroneous’ or ‘fake’ volume. The measure is conservative - the median of the ratio
is 0.001. This allows us to exclude any data points that are clearly errors.

3. Cryptocurrency type: We utilize cryptocurrency classification data from CoinMarketCap and screen

out all cryptocurrencies which:

Are linked, are by backed or track the price of gold or any precious metal.

So-called ‘wrapped’ coins - i.e. WBTC.

Stablecoins, including those which are centralized (USDT, USDC) and algorithmically stabilized
(DAI, UST) for all fiat currencies.

— Centralized exchange based coins which are derivatives.

4. API issues and suspicious trading activity: As far as suspicious trading activity is concerned,
a series of filter are implemented by CryptoCompare.com to mitigate the effect of suspicious trading
activity: first, trade outliers are automatically excluded from the calculation of trading volume and
therefore from the volume-weighting scheme. For a trade to be considered an outlier, it must deviate

significantly either from the median of the set of exchanges, or from the previous aggregate price.'6

16Such deviations can occur for a number of reasons, such as extremely low liquidity on a particular pair, erroneous


https://min-api.cryptocompare.com/
https://www.intotheblock.com
https://coinmarketcap.com/cryptocurrency-category/
https://min-api.cryptocompare.com/

Second, exchanges are reviewed on a regular basis for each given cryptocurrency pair. Constituent
exchanges are excluded if (1) posted prices are too volatile compared to market average of a given pair,
(2) trading has been suspended by the exchange on a given day, (3) verified user or social media reports
false data provision, or (4) malfunctioning of their public API. These steps mitigate the effect of fake
volume and substantially reduces the exposure of the empirical analysis to concerns of misreporting of

trading activity for some exchanges.!”

A.3 Final sample

After all filters and checks we are left with an unbalanced panel of 332 cryptocurrency pairs which span the
period from September 1st, 2017 to September 1st, 2022. As shown in Figure 1, the sample cover a fraction of
the total market capitalization in the range of 70% to 95% of the total market value.

B Cryptocurrency characteristics

This section details the construction of variables we use in the main body of the paper and the relevant

references. Unless otherwise specified we use the data sources outlined in Section A.

new add. : The number of unique addresses that appeared for the first time in a transaction of the native coin
in the network. Liu et al. (2021) provide some preliminary evidence on the predictive content of new addresses

for cryptocurrency returns.

active add. : The number of unique addresses that were active in the network either as a sender or receiver.
Only addresses that were active in successful transactions are counted. As highlighted by Pagnotta and Buraschi

(2018) such statistics approximate the network growth and the adoption base for a given cryptocurrency.

bm. : The "network-to-market value”. This is calculated as the cumulative number of unique addresses over
the current available supply times the current USD price. The current supply is the number of coins or tokens
that have been mined or generated and corresponds to the number that are currently in public and company
hands, which are circulating in the market and/or locked/vested. As suggested in Pagnotta and Buraschi
(2018), the number of unique addresses represents a proxy for the fundamental value of a cryptocurrency. By

dividing such value over the actual market value one can obtain a crude approximation of a valuation ratio.

$volume. : The total dollar amount of native tokens transferred across wallets within and across centralised

exchanges.

size. : The market capitalization is defined as the product of the current available supply times the current
USD price (see, e.g., Liu et al., 2022). The current supply is the number of coins or tokens that have been

mined or generated and corresponds to the number that are currently in public and company hands, which

data from an exchange and the incorrect mapping of a pair in the API.

"Two additional comments are in order. First, notice that “fake” trading typically takes place on crypto-to-crypto
trading on single, possibly small, exchanges which inflates trading volume in order to attract Initial Coin Offering’s
(ICO) listings and/or to manipulate the market (see, e.g., Li et al., 2018). By considering trading against a fiat currency
and an aggregation over a large cross-section of exchanges, the risk that manipulation on a single exchange could affect
the overall market activity is substantially mitigated. Second, the fact that we focus on transactions that take place
on regular trading exchanges should mitigate the concern that market activity is primarily driven by illegal activities.
The latter typically do not take place on registered centralised or decentralised exchanges but through peer-to-peer
transactions on the blockchain (see Foley et al., 2019 and Griffin and Shams, 2020).



are circulating in the market and/or locked/vested. This definition follows the blueprint in Fama and French
(1993).

rvol. : We follow Yang and Zhang (2000) and calculate the daily realized volatility calculated based on daily
OHLC prices.

bid-ask. : The bid-ask spread is the average of two alternative synthetic approximations based on OHLC prices
by Abdi and Ranaldo (2017) and Corwin and Schultz (2012). On a given day and for a given cryptocurrency
pair we calculate both proxies and take the simple average between the two.

illiq. : We follow Amihud (2002) and calculate a price impact (illiquidity) measure as the ratio between the

absolute value of the cumulative intraday returns and the aggregate daily trading volume expressed in $.

capm (. : The market beta is calculated based on a 30-day rolling window. We follow Lewellen and Nagel
(2006) and calculate the beta as the sum of the coefficients of daily returns on the market excess return and
one lag of the market excess returns. The market portfolio is calculated as the value-weighted average of the

asset returns available on each day ¢.

capm «. : The intercept from a CAPM regression calculated based on a 30-day rolling window (see description
of the capm f).

ivol. : The standard deviation from the residuals from a CAPM regression calculated based on a 30-day

rolling window (see description of the capm f3).

turnover. : Turnover is last day’s trading volume in $ over the current supply (see Datar et al., 1998).
The current supply is the number of coins or tokens that have been mined or generated and corresponds
to the number that are currently in public and company hands, which are circulating in the market and/or
locked /vested.

dto. : We follow the logic in Garfinkel (2009) and define de-trended turnover as the ratio of daily volume in
$ to current available supply, minus the daily market turnover and de-trend it by its 180 trading day median.

The daily market turnover is a value-weighed aggregation of the individual assets’ turnover.

std_to. : The standard deviation of the residuals from a 30-day rolling window regression of daily turnover

on a constant (see Chordia et al., 2001).

std_vol. : The standard deviation of the residuals from a regression of daily trading volume on a constant
(see Chordia et al., 2001).

rel_to high. : Closeness to 90-day high is the ratio of the cryptocurrency price at the end of the previous
day and the previous 90-day high. This adapts to a shorter time span the logic in George and Hwang (2004).

max. : Maximum daily return in the previous month following Bali et al. (2011).
vol shock ld. : We follow Llorente et al. (2002) and construct the log deviation of trading volume from its

trend estimated over a rolling period of I = 30,60 days. The log standard deviation computed over the same

rolling window is used to standardise the estimates due to cross-sectional imbalances (see Babiak et al., 2022).



r2_1. : Short-term reversal as in Jegadeesh (1990)

rl_2. : We follow Liu et al. (2022) and construct a variety of momentum strategies based on the cumulative

return from [ = 7,13, 22, and 31 days before the return prediction to two days before.

r30_14. : We define intermediate momentum as the cumulative returns from 30 days before prediction to 14

days before. This is an adaption on a higher frequency time span from Novy-Marx (2012).

r180_60. : We define long-term reversal is the cumulative return from 180 days before the return prediction

to 60 days before. This is an adaption of De Bondt and Thaler (1985) to a higher frequency setting.

VaR(5%). : The historical Value-at-Risk at 5% calculated based on past 90-day returns.

C Additional results

This section provides a series of additional results. We first look at the performance of an IPCA with and
without restriction on the intercept parameters. Second, we look at the ability of IPCA latent factors extracted
from the cross section of cryptocurrency returns to price 25 equity portfolios sorted on size and book-to-market,
or size and momentum. Third, we look at the correlation between the latent factors extracted from an IPCA
and a static PCA model.

C.1 IPCA performance with and without intercept

Table C1 reports the in-sample asset pricing performance of different IPCA specifications with and without
restrictions on the intercept coefficients I',. In addition, we report the values of Bai and Ng (2002) information
criteria for each specification of latent factor models as well as the p-values for the test of I'y, = 0 for IPCA
based on a wild bootstrap with 10,000 draws.

The results suggest that the explanatory power of the characteristic-driven intercept is limited, that is the
IPCA explains the variation in realised and expected returns solely based on risk compensation (see Kelly et al.,
2019). For instance, the R?,, from a baseline IPCA4 assuming I, # 0 is equal to 13.5% versus 13.4% when the
matrix of coefficients I',, is restricted to zero. That is, the additional variation that is captured by the intercept
is minimal with respect to the latent factors. The spread in the performance of the single-factor specification
remains negligible for the waed metric. Increasing the number of latent factors does not lead to a widening of

the gap between the restricted and unrestricted IPCA specifications.

The same results hold when we use the set of 28 managed portfolios as test assets. For instance, the
Riyw (R2,ca.) 15 50.5% (2.05%) for the unrestricted IPCA versus a 51.9% (1.93%) for the restricted TPCA.
Interestingly, the relative pricing error is largely in favour of the restricted IPCA specification. For instance,
the RPE from the IPCA4 restricted is 6.7% against a 96% RPE from the equivalent unrestricted IPCA model.

C.2 Pricing equity with IPCA cryptocurrency factors

Figure C1 reports the results from a series of time-series regressions in which each test asset is regressed either
on the Fama-French FF5 model (left panels) or the three latent factors from the crypto IPCA4 (right panels).
The top panels report the average absolute pricing error by using 25 portfolios sorted on size and book-to-
market as test assets. The average absolute pricing error from the FF5 model is 3.4% annualized against a

29.5% obtained from cryptocurrency factors. In addition, for the IPCA3 model the alphas are clustered around



Table C1: Asset pricing performance with and without intercept

This table reports the in-sample asset pricing performance of different IPCA specifications with and without restrictions
on the intercept coefficients I'y. In addition, we report the values of Bai and Ng (2002) information criteria for each
specification of latent factor models as well as the p-values for the test of I'y = 0 for IPCA based on a wild bootstrap
with 10,000 draws. The data are sampled daily from September 1st 2017 to September 1st 2022, where a day is defined
with a start time of 00:00:00 UTC. Daily prices and volume are aggregated across more than 80 different centralised
exchanges.

To #0 [o=0
IPCA1 TIPCA2 TIPCA3 1IPCA4 IPCA5 IPCA6 IPCA7 IPCA1 IPCA2 1IPCA3 1IPCA4 TIPCA5 1IPCA6 IPCA7

RZ, (%) 1142 1229 1291 1354 14.06 1458 15.15 11.07 1201 1274 1337 1398 1450 15.08
R2, (%) 035 035 035 035 035 035 035 0.00 015 031 032 033 033 033
RZ (%) 1865 1894 1911 1931 1941 19.62  19.69 1861 18.89 19.14 19.39 1951 19.63 19.69
R2 (%) 9.26 10.12 1080 11.46 1201 1257 13.17 898 985 1063 11.32 11.96 1252 13.13
RZ. (%) 18.87 3877 4256 5048 53.99 56.69  58.53 16.76 3372 43.36  51.91 5357 5651 58.38
R ., (%) 211 207 208 205 205 205 204 0.03 049 201 193 196 1.95 195
R%, . (%) 1047 3178 3574 43.67 4726 50.14  52.09 818 2642 3653 4516 46.91 49.90 51.94
R2, (%) 1356 30.13  33.40 41.70 4538 48.35  50.53 1234 2514 3492 43.25 4517 4862 50.45
RPE 100.06 88.54 101.24 95.96 228.89 158.14 171.20 99.48 84.03 643 666 586 470 491
IC 750  -7.66 -7.61 -7.64 -7.59 -T54  -7.46 747 758 762 -T.6T  -T58 <753 -7.46

Hy:Tq=0 (pval) 0.00 0.00 0.00 0.02 0.07 0.98 0.96

the 45-degree line, which suggests the factors extracted from the panel of cryptocurrency returns do not provide
significant pricing information for equity markets. Results are similar by looking at 25 portfolios sorted on size
and momentum (bottom panels). The FF5 equity factor model produces an average absolute pricing error equal
to 4.9% annualized, against a sixfold higher pricing error of 30.7% obtained when using the IPCA3 factors. Yet,

none of the alphas from the FF5 pricing model is significant.

C.3 IPCA vs PCA factors

Since latent factors can be only identified up to a rotation, we assess the correlations between PCA and IPCA
latent factors by a series of spanning regressions, that is we regress each of the factors from the baseline IPCA3
model on all of the seven factors from the competing PCA7. The choice of these two models is consistent with
the main results represented in the paper. Table C2 shows two interesting results. First, none of the static
principal components perfectly correlates with the IPCA ones: the constant, meaning the unexplained factor
returns, is strongly significant for all the three latent factors. Second, while the multiple correlation coefficients
(VR?) for the second IPCA factor shows a strong correlation of 84% with the PCA factors jointly, the first
and third IPCA factors have a smaller multiple correlation of 43% and 63%, respectively. These results suggest
that the factors extracted from a standard principal component analysis factors do not span the IPCA factors.



Figure C1: Alphas of double-sorted equity portfolios

This figure shows the alphas from a time series regression of double-sorted equity portfolios on the set of factors from
either the restricted (I'a = 0) IPCA model with K = 4 factors or the five-factor model of Fama and French (2015). The
left (right) plots illustrate the results for the Fama-French (IPCA) model. The test assets are 25 equity portfolios sorted
on (1) size and book-to-market (Panel A) and (2) size and momentum (Panel B). Significant alphas with absolute values
of t-statistics greater than 2.0 are depicted with filled diamonds, while insignificant alphas are denoted with unfilled
circles. All reported values are daily and expressed in percentage.
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Table C2: IPCA vs PCA spanning regressions

This table reports the results of a number of time-series regressions in which we regress each latent factor from a
restricted (I'e = 0) IPCA model with K = 3 on six latent factors extracted from a static PCA method. We report the
estimates and label with ***, ** * those coefficients significant at a 1%, 5%, and 10% confidence level, based on robust
standard errors. The multiple correlation coefficients in the last row are measured as the square root of R?. The sample
factor returns is daily from September 1st 2017 to September 1st 2022.

IPCA1 IPCA2 IPCA3
a(%) 2741 F¥E (0284 ¥RE (0422 K

PCA1 -0.012 *** 0.076 *** -0.041 ***
PCA2  0.010 -0.003 -0.009

PCA3  0.042 *** _0.023 * -0.023  *¥*
PCA4  0.022 * 0.031 *** _0.034 HF**

PCA5  0.003 0.013  *** 0.005
PCA6  0.043 *** -0.016 *** -0.026 ***
PCA7 0.023 * -0.036 -0.046 *

VR? 0.431 0.841 0.633
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