National Bank of Poland

Asymmetry of the exchange rate pass-through: An exercise on the Polish data

Jan Przystupa Ewa Wróbel

10th Annual NBP - SNB Seminar June 2 – 4, 2013 Zurich

ECONOMIC INSTITUTE

BANK POLSKI

PLN/USD fluctuations

The exchange rate

Exchange rate vs. inflation

ECONOMIC INSTITUTE

POLSKI

MOTIVATION

Understanding how prices respond to exchange rate is of key importance for any open economy.

An extra stimulus:

FAQ:

- What is an impact of currerent depreciation (appreciation) on consumer prices?
- Does it depend on the scale of the ex changes or on the phase of the business cycle?
- What is the pricing policy of the foreign exporting firms towards the Polish market?

To answer these questions we propose a complex investigation of the exchange rate channel of the monetary transmission mechanism for an open economy with the floating exchange rate regime.

First: we assessed the level of the exchange rate pass-through.

Based on McCarthy (1999) where the impact of a sequence of supply, demand and exchange rate shocks on the import, producer and consumer prices is examined. Since it is a popular method we used it for the sake of comparability with other studies and to have an idea about the level of the pass-through effect in Poland.

McCarthy's model (1999)

- π index of the import transaction prices expressed in the domestic currency;
- $\mathbf{E}m$ unexpected change of the import price

$$\pi_{m} = E_{t-1}(\pi_{m}) + \alpha_{1}\varepsilon_{s} + \alpha_{2}\varepsilon_{d} + \alpha_{3}\varepsilon_{e} + \varepsilon_{m}$$

$$\pi_{w} - \text{ price index of the sold production of industry (PPI);}$$

$$\varepsilon_{w} - \text{ unexpected change of the production price}$$

$$\pi_{w} = E_{t-1}(\pi_{w}) + \beta_{1}\varepsilon_{s} + \beta_{2}\varepsilon_{d} + \beta_{3}\varepsilon_{e} + \beta_{4}\varepsilon_{m} + \varepsilon_{w}$$

$$T_{c} - \text{ consumption price index (CPI);}$$

$$\varepsilon_{c} - \text{ unexpected change of the CPI}$$

$$\pi_{c} = E_{t-1}(\pi_{c}) + \gamma_{1}\varepsilon_{s} + \gamma_{2}\varepsilon_{d} + \gamma_{3}\varepsilon_{e} + \gamma_{4}\varepsilon_{m} + \gamma_{5}\varepsilon_{w} + \varepsilon_{c}$$

1

I

Exchange rate pass-through. Estimation based on the McCarthy's SVAR

$$PT(z_t)_h = \frac{\Delta z_{t,t+h}}{\Delta e_{t,t+h}}$$

Pass-through effect: changes of the variable z(import, production, consumption prices) from t to t+h being the response on the exchange rate changes between t and t+h

Pass-through effect	2 quarters		4 quarters		8 quarters	
$\begin{vmatrix} after \rightarrow \\ for \downarrow \end{vmatrix}$	Est.02	Est.11	Est.02	Est.11	Est.02	Est.11
Import transaction prices (PM)	0.51	0.46	0.69	0.67	0.79	0.71
Price index of the sold production of industry (PPI)	0.27	0.19	0.50	0.33	0.59	0.38
Consumption price index CPI)	0.17	0.10	0.36	0.16	0.42	0.18

Exchange rate pass-through. Estimation based on the McCarthy's SVAR

Time decomposition of the pass-through effect.

Time decomposition of the pass-through effect for ↓	Quarter after shock				
(total P-T=100)	Q ₀	Q ₁	Q ₂	Q ₃	Q ₄ -Q ₈
Import transaction prices (PM)	17	49	25	4	5
Price index of the sold production of industry (PPI)	12	35	29	10	14
Consumption price index CPI)	10	42	31	7	10

Assessing the level of the exchange rate pass-through to the import prices and pricing to market (PTM) with cointegration technics.

Cointergating vector, exchange rate - NEER

$$p_t^{IMP} = \alpha_0 + \alpha_1 e_t + \alpha_2 p_t^F + \alpha_3 p_t^H + \alpha_4 y_t^H + \varepsilon_t$$

ECONOMIC INSTITUTE

POLSKI

NARODOWY BANK POLSKI

Cointegrating vector, bilateral exchange rate EUR/PLN				
$p_t^{IMP} = \alpha_0 + \alpha_2$	$a_1e_t + \alpha_2 p_t^F + \alpha_3 p_t^F$	$p_t^H + \alpha_4 y_t^H + \varepsilon_t$		
	VECM (cointegration	Fully modified least squares		
	Johansen),t-stat in []	t-stat in []		
unrestricted				
$\alpha_{\rm l}$	-0.71 [2.47]	-0.68 [4.73]		
α_2	0.41 [0.35]	0.74 [1.09]		
α_3	0.83 [2.27]	0.82 [4.4]		
restricted: $\alpha_1 = \alpha_2$	Chi-square=0.03, p. 0.86	Chi-square=0.018, p. 0.91		
α_1	-0.78 [5.28]	-0.67 [7.15]		
α_2	0.78 [5.28]	0.67 [7.15]		
α_3	0.71 [7.22]	0.84 [15.29]		
restricted: $\alpha_1 = \alpha_2 = 1$	Chi-square=7.24, p. 0.026	Chi-square=12.46, p. 0.002		
restricted: $\alpha_1 = \alpha_2 = 1, \alpha_3 = 0$	Chi-square=7.49, p. 0.058	Chi-square=260, p. 0.000		
restricted: $\alpha_1 = \alpha_2 = 1$	Chi-square=6.87, p. 0.032	Chi-square=40.0p. 0.000		

Dynamic import price equations

 $\Delta p_{t}^{IMP} = \beta_{0} + \beta_{1} E C_{t-1} + \sum_{i=0}^{4} \beta_{2,i} \Delta e_{t-i} + \sum_{i=0}^{4} \beta_{3,i} \Delta p_{t-i}^{F} + \sum_{i=0}^{4} \beta_{4,i} \Delta p_{t-i}^{H} + \sum_{i=1}^{4} \beta_{5,i} \Delta p_{t-i}^{IMP} + v_{t-i}^{F} + v_{t-i}^{F}$

Table A11. Dynamic import price equation

POLSKI

Variable	Coefficient	t-stat
eta_0	0.0011	0.16
$eta_{ m l}$ Return to equilibrium	-0.464	-3.02
$eta_{2,0}$ EX pass-through (short term)	0.51	3.94
$eta_{4,0}$ PTM	0.898	1.82

Table A 12. Dynamic import price eq uation: appreciation of the EUR/PLN, usable obs.: 24.

Variable	Coefficient	t-stat, p-value in ()	
eta_0^A	-0.0023	-0.16 (0.874)	
β_1^A	-0.654	-2.96 (0.008)	$\mathbf{A} = \begin{pmatrix} 1 & \text{if } \Delta \mathbf{e}_t \prec 0 \end{pmatrix}$
$\beta^{\scriptscriptstyle A}_{2,0}$	0.55	1.58 (0.131)	$A_t = \begin{cases} 0 & \text{otherwis} \end{cases}$
$eta_{4,0}^A$	1.29	1.8 (0.091)	

Table A 13. Dynamic import price equ ation: depreciation of the EUR/PLN, usable obs.: 20

Variable	Coefficient	t-stat	
β_0^D	-0.0055	-0.39	
β_1^D	-0.225	-1.03	$D - \int_{0}^{1} \mathrm{if} \Delta e_t \succ 0$
$\beta_{2,0}^{D}$	0.59	2.07	$D_t - \begin{bmatrix} 0 & \text{otherwis} \end{bmatrix}$
$\beta_{4,0}^{D}$	0.77	1.12	

Dynamic import price equations

 $\Delta p_{t}^{IMP} = \beta_{0} + \beta_{1} E C_{t-1} + \sum_{i=0}^{4} \beta_{2,i} \Delta e_{t-i} + \sum_{i=0}^{4} \beta_{3,i} \Delta p_{t-i}^{F} + \sum_{i=0}^{4} \beta_{4,i} \Delta p_{t-i}^{H} + \sum_{i=1}^{4} \beta_{5,i} \Delta p_{t-i}^{IMP} + v_{t-i} + \sum_{i=0}^{4} \beta_{4,i} \Delta p_{t-i}^{H} + \sum_{i=0}^{4} \beta_{5,i} \Delta p_{t-i}^{IMP} + v_{t-i} + \sum_{i=0}^{4} \beta_{5,i} \Delta p_{t-i} + v_{t-i} + \sum_{i=0}^{4} \beta_{5,i} \Delta p_{t-i} + \sum_{i=0}^{4} \beta_{5,i} \Delta p_{t-i} + v_{t-i} + \sum_{i=0}^{4} \beta_{5,i} \Delta p_{t-i} + v_{t-i} + v_{t-i} + \sum_{i=0}^{4} \beta_{5,i} \Delta p_{t-i} + v_{t-i} +$

Table A14. Dynamic import price equation: positive EC, usable obs.: 21.

Variable	Coefficient	t-stat	
$eta_0^{\scriptscriptstyle EC+}$	0.00183	0.08	
β_1^{EC+}	-0.31	-0.63	
$\beta_{2,0}^{EC+}$	0.66	4.27	
$eta_{4,0}^{\scriptscriptstyle EC+}$	0.003	0.0031	

Table A15. Dynamic import price equation: negative EC, usable	le obs.: 2	3.
---	------------	----

Variable	Coefficient	t-stat	
β_0^{EC-}	-0.019	-1.62	
β_1^{EC-}	-0.65	-2.01	
$eta_{2,0}^{\scriptscriptstyle EC-}$	0.16	0.82	
$eta_{4,0}^{\scriptscriptstyle EC-}$	2.0	3.39	

EC+ import prices are lower than the equilibrium level determined by exporters' prices and domestic prices EC- import prices are higher than the equilibrium level determined by exporters' prices and domestic prices

Exchange rate pass-through models based on the Phillips curve

$$\pi_{t,k}^{q_i} = \alpha_{1,k}^{q_i} E_t \pi_{t+1} + (1 - \alpha_{1,k}^{q_i} - \alpha_{2,k}^{q_i}) \pi_{t-1} + \alpha_{2,k}^{q_i} (\Delta e_{t-1}^r) + \alpha_{3,k}^{q_i} y_{t-2} + \varepsilon_t$$

where:

 π stands for inflation (CPI);

 q_i is a variable (i=1...4) stands for:

 $i=1 \rightarrow output gap (y);$

i=2 $\rightarrow \Delta$ nominal effective exchange rate (Δe);

 $i=3 \rightarrow$ volatility of the nominal effective exchange rate (s);

i=4 \rightarrow inflation (π): actual inflation – inflation target (π^*);

k=1,2; Threshold estimated with SETAR (Self-Exciting Threshold AutoRegresive) model k=1 for $qi > \tau$ ($\tau = threshold$); k=2 for $qi \le \tau$

k=3,4; Investigate nonreversibility of the linear functions through segmenting the variables. k=3 for $q_i > q_{i-1}$ k=4 for $q_i \le q_{i-1}$

 e'_{t-1} is a nominal effective exchange rate (in log) plus foreign inflation (HICP in the euro zone; in log)

The economic interpretation of the threshold model and model based on nonreversibility of the linear functions

ECONOMIC INSTITUTE

BANK POLSKI

The economic interpretation of the threshold model and model based on nonreversibility of the linear functions

Two-leaf clover curve

The asymmetry of the exchange rate pass-through to the consumer prices

Asymmetry of the	Threshold models (τ = threshold)		Nonreversible linear models	
exchange rate pass- through to CPI related to:	variable > τ	variable $\leq \tau$	$t_1 > t_0$	$t_1 \leq t_0$
	$\tau = 0.24\%$		0.274	0.001
Output gap (y)	0.192	0.179	0.274	0.091
Δ nominal effective	$\tau = 2$	2.08%		0.238
exchange rate (Δe)	0.065	0.239	0.018	
Volatility of the	$\tau = 4.32\%$			
nominal effective exchange rate (s)	0.247	0.549	0.139	0.141
	τ = level of official inflation target			
Inflation (π)			0.160	0.183
	0.195	0.201		
Pass-through (general)		0.22	29	
NDOWY KI	Eco	DNOMIC INSTITUTE		

The asymmetry of the exchange rate pass-through to the consumer prices

This is coherent with the behavior of enterprises in the business cycle, conditioning their investment decisions on expected profits with a maximum in the early expansion and a minimum in the early recession. The enterprises' propensity to change prices follows profit expectations.

Exchange rate pass-through and inflation.

Figures shown in the table indicate by how many percentage points inflation in a given quarter would be higher (-) or lower (+) than the counterfactual inflation that assumes no exchange rate changes. A year on year impact is calculated as an average impact in the consecutive four quarters.

Linear PT

Asym.PT

THANK YOU ③

