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1 Introduction

There is an extensive literature that proposes and evaluates methods for forecasting real

GDP. For a long time, researchers concentrated on analysing the most precise forecasts,

i.e. ‘point’ forecasts. More recently, they have turned to a second aspect of forecast

analysis, looking at ‘density’ forecasts, that is estimating the uncertainty contained in

GDP forecasts. However, there is also a further aspect, which has been much neglected

up to now. Not least the stark, long-lasting policy interventions during and after the

financial crisis sparked an interest in the joint evolution of macro-economic variables and

sectoral heterogeneity, i.e. in the cross-sectional distribution of the production sectors

that together constitute the real economy.

In this paper, we evaluate the forecasting performance of time series models describing

value added series for the many production sectors that sum up to aggregate output. A

useful production-side model should arguably perform well in all three aspects mentioned

above. We therefore evaluate the model forecasting performance comprehensively by

assessing the point and density forecasts for aggregate GDP, as well as the cross-sectional

distribution of the production sectors. We focus on the forecast performance of different

‘macro-econometric’, production-side models, i.e. models that are able to capture the joint

dynamics of the sectoral series and important macroeconomic variables, relative to several

simpler benchmark models.

Our analysis proceeds in three steps. First, we present our set of models and describe

how they can be estimated using Bayesian methods. We concentrate on models that are

suited for the many sectoral time series jointly with important macroeconomic time series.

We therefore include a Bayesian vector autoregressive model (BVAR), which is probably

the most popular choice for modelling many macroeconomic time series simultaneously.

In addition, taking into account the literature on factor-augmented vector autoregressive

models, we propose an alternative approach relying on a dynamic factor model structure

(DFM). In short, this approach assumes that each of the sectoral series can be decomposed

into a component driven by macro-economic factors and a sector-specific component that

is orthogonal to these factors. The macroeconomic factors are modelled as a BVAR, while
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the sector-specific component follows a univariate process. Our set of models is completed

with a number of simpler benchmark models.

In a second step, we evaluate the point and density forecast performance of these models

for aggregate GDP using data for the euro area and Switzerland. As sectoral real value

added sums up to aggregate GDP, all our sectoral models provide us directly with a

prediction for aggregate GDP. The performance evaluation, based on standard evaluation

criteria, is straightforward. In addition to the evaluation of standard measures such as

the RMSE, we analyse the decomposition of the aggregate forecast error variances into

the weighted sum of forecast error variance and the covariances between the sectors. If a

model performs better owing to a reduction in the covariance terms, this indicates that

the model captures the comovement between the series more accurately. We furthermore

analyse the role of sectoral comovement by looking separately at episodes with high and

low comovement.

In a third step, we turn to the evaluation of the cross-sectional forecast distribution.

For this evaluation, we rely on standard measures for multivariate forecasts such as the

log determinant of (weighted) error covariance matrix and a multivariate mean squared

error.1 But we also propose two new measures comparing specific aspects of the forecast

distribution. The first measure compares the weighted share of sectors that were correctly

projected to grow above and below their long-term average respectively. This criterion

reflects the idea that a model is useful if it is able to forecast what stage in the business cycle

a sector might be in. The second measure assesses how well models predict the dispersion of

growth across the economy as measured by its cross-sectoral standard deviation. Looking

at the second moment of the cross-sectional distribution allows us to tell whether a model

is able to predict the future dispersion of the sectors, abstracting from its sectoral point

forecast performance. In other words, a model can perform well if it correctly predicts

how different the sectors are from each other, even if it is not able to tell precisely how

each sector will grow.

We find quite distinct evidence that the factor model performs very well, irrespective of

the evaluation measure. Indeed, it outperforms the simple benchmarks in most tests, and

1In the literature, this criterion is also labelled ’weighted trace mean squared forecast error’.
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in many cases also the BVAR. This is true for both point and density forecasts. In the

latter case, the superiority tends to be even more pronounced. Our decomposition of

the forecast error variances into sector-specific variances and covariances between sectors

supports the hypothesis that the factor model outperforms its competitors because it

is better able to understand the degree of sectoral comovement. Interestingly, this is

particularly the case if idiosyncratic factors are important, such that sectoral comovement

is low. Moreover, the factor model tends to outperform the other models also at forecasting

sectoral heterogeneity. In particular, it more accurately forecasts the sectoral dispersion

as measured by the cross-sectional standard deviation of the sectors.

Before turning to the description of the models and their evaluation, we present some

remarks on the existing literature. We then show the results of the sectoral heterogeneity

analysis.

2 Related literature

Our paper contributes to the strand of literature that compares the forecasting performance

of models using aggregate data with those that incorporate disaggregate information. A

few papers derive analytical results. A key prediction from the theoretical literature is

that an optimal model trades off potential model misspecification in aggregate models and

increased estimation uncertainty, due to the higher number of parameters in disaggregate

models (see e.g. Hendry and Hubrich (2011)). General theoretical results regarding the

determinants of this trade-off are scarce. One exception is an early conjecture by Taylor

(1978). He argues, based on analytical considerations, that the trade-off depends on the

extent of comovement between the disaggregate series. Models using aggregate series or

univariate models for disaggregate series are inefficient if the disaggregate series exhibit

heterogenous dynamics. At the same time, gains of multivariate disaggregate models are

predicted to be rather small if the series move homogeneously. We assess this hypothesis

empirically in our setting in section 5.3.

Given that the relative forecast performance of disaggregate and aggregate models depends

on the specifics of the data, a number of papers provide empirical assessments. Marcellino
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et al. (2003) propose an indicator model using a geographical disaggregation of GDP for the

euro area. Zellner and Tobias (2000) put forward a similar model for a set of 18 countries.

Both of these early papers show the superiority of models using disaggregate data. There

are, however, only a few studies that look at the production-side disaggregation of GDP.

Most of them focus predominantly on the point forecast performance of indicator-based

models, and therefore concentrate mostly on short-term forecasts.

For the euro area, Hahn and Skudelny (2008) find that choosing the best-performing

bridge equations for each sector of production outperforms an AR model forecasting

aggregate GDP directly. Barhoumi et al. (2012) perform a similar analysis for the French

economy and reach the same conclusion. Drechsel and Scheufele (2012) analyse the

performance of a production-side disaggregation and a disaggregation into the expenditure

components of German GDP. They compare the resultant forecasts with those of aggregate

benchmarks. Overall, they find only limited evidence that bottom-up approaches lead

to better predictions. However, in certain cases the production-side approach produces

statistically significantly smaller forecast errors than the direct GDP forecasts. More

recently, Martinsen et al. (2014) find that disaggregate survey data at a regional and

sectoral level improve the performance of factor models in forecasting overall output

growth. Along with these analyses, a vast literature has emerged that tests the optimal

number of indicators needed to forecast a specific aggregate target variable. Barhoumi

et al. (2012) and Boivin and Ng (2006) provide evidence that a medium-sized number of

indicators often leads to better performance than a very large number. This is because

idiosyncratic errors are often cross-correlated.

A major caveat of most of these indicator models is, however, that they are not able

to capture sectoral linkages and comovement explicitly. Production networks play an

important role in the propagation of shocks throughout the economy, and can cause

low-level shocks to lead to sizeable aggregate fluctuations, as argued by Horvath (1998)

and more recently Carvalho et al. (2016). As sectoral linkages are important amplifiers

of aggregate movements, their inclusion in a model should presumably help to improve

forecasts of aggregate variables.

A number of studies have measured the forecasting performance of models that take
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linkages into account, and have compared these to models with non-disaggregated data.

The bulk of them is applied to forecasting inflation, with ambiguous results. Hubrich

(2005) simulates out-of-sample forecasts for euro area inflation and its five sub-components,

and finds that using disaggregate data does not necessarily help, although there are some

improvements on medium-term forecast horizons. The reason is that in the models used,

many shocks affect the sub-components of inflation in similar ways. This creates highly

correlated errors of the components, which are then added up rather than cancelled out.

Additionally, more disaggregation comes at the cost of a higher number of parameters

to estimate, with decreasing precision. As a consequence, Hendry and Hubrich (2011)

favour forecasting aggregate inflation directly using disaggregate information, rather than

combining disaggregate forecasts.

These findings have, however, been refuted by Dées and Günther (2014)’s work. They use

a panel of sectoral price data from five geographical areas to forecast different measures of

inflation, and find that the disaggregate approach improves forecast performance, especially

for medium-term horizons. Bermingham and D’Agostino (2011) emphasise that the benefits

of disaggregation increase with the number of disaggregate series, but only when one uses

models that pick up common factors and feedback effects, such as factor-augmented or

BVAR models.

Based on this literature, we test whether modelling the production side of GDP using

models that allow for dynamic linkages is beneficial. To the best of our knowledge, we

are the first to do so. We move beyond the evaluation of point forecasts and also test

the quality of the density forecasts. The tests are carried out for the short run as well as

for the medium run (eight quarters ahead). Furthermore, we assess the accuracy of the

sector-level forecasts.

6

3 Models

For the forecasting of macroeconomic time series, a vector autoregressive model (VAR)

is usually a good starting point. Each variable is modelled as a function of its own lags

and the lags of all other variables included in the model. Such models can be used for

forecasting and also, albeit with some limitations, for more structural analysis. Because

we use a large set of variables including macro and sectoral series, some shrinkage of the

parameter space is required, as the number of parameters increases quadratically with the

number of observed variables in a VAR.

In the literature, there are two popular approaches for achieving a parsimonious, simultaneous

modelling of a large number of time series. The first is a BVAR approach, i.e. a Bayesian

version of a standard VAR (Litterman, 1979, Doan et al., 1984). The shrinkage of the

parameter space is achieved by means of informative priors on the coefficients of the

model. The second strategy that has become increasingly popular for modelling a large

set of macroeconomic time series and for forecasting is a dynamic factor structure (Stock

and Watson, 2002). It is assumed that the comovement between observed series can be

described appropriately with few common factors. Each observed series is then a linear

combination of these factors and their lags, and an idiosyncratic component. The factors

themselves are modelled as a dynamic process,2 giving it its characteristic name Dynamic

Factor Model (DFM).3

A strong point of both types of model, the BVAR and the DFM, is that they are able

to track down which macroeconomic shocks are driving the economy. Bäurle and Steiner

(2015), for example, measure the response of macroeconomic shocks on sector-specific

value added within a DFM framework. Such analyses enable us to quantify the impact of

aggregate shocks on the individual production sectors of an economy. As the transmission

of such shocks often takes a few quarters, in addition to the results for the short run we

also analyse the medium-run forecasts (eight quarters ahead). To evaluate how well both

2The terms ‘dynamic’ vs ‘static’ factor models are not used uniformly in the literature. Bai and Ng
(2002) refer to a ‘dynamic’ factor model if the observed series load on the factors and also their lags. Note,
however, that such a model can be rewritten in a ‘static’ form by redefining the state vector.

3Note that when the primary interest is not to model the large set of variables per se, but merely to
extract information from these variables that can be included in a standard VAR, then the model is usually
called a ‘factor augmented vector autoregression’ (FAVAR, see e.g. Bernanke et al. (2005)).
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model types are able to forecast the economy in different dimensions (point and density

forecast, as well as sectoral dispersion), we simulate a horse race between them and a set

of simpler benchmark models. The latter cannot be used for structural analysis, but are

known to perform relatively well for forecasting. Both of the two main models (which

operate on the full set of sectoral series) and the simpler benchmark models are described

in the rest of this section.

We denote quarter-on-quarter value added growth of a single sector s at time t by xst and

the stacked vector of xst in all S sectors by XS
t . The vector of macro variables is denoted by

XM
t . The vector of XS

t and XM
t stacked into one vector is denoted by Xt. This contains

all data that is jointly used for the two baseline models. Growth in aggregate GDP yt

equals the weighted sum of sectoral value added growth,
∑S

s=1 ωs,t−1x
s
t , where the weights

ωs,t−1 are the nominal value added share of total value added of the previous time period,

as is commonly used to calculate growth contributions.

3.1 Large Vector Autoregressive Model (VAR-L)

We set up a large Vector Autoregressive Model (VAR-L) using all macro variables XM
t

and sectoral value added series XS
t , and estimate the model with Bayesian methods. The

stacked vector Xt is assumed to depend linearly on its lags and some disturbances εt:

Xt = c+

p∑
k=1

ΦkXt−k + εt (1)

where the constant c and Φk, k = 1, . . . , p are coefficient matrices and εt is a vector of

innovations, which are assumed to be Gaussian white noise, i.e. εt ∼ N(0,Σ).

With Xt reaching a large dimension, the number of parameters to be estimated is large,

relative to the number of available observations. Thus some shrinking of the parameter

space is needed. Following the vast majority of the literature, this is achieved by using a

Minnesota type prior. Our implementation follows Banbura et al. (2010) and sets the first

and the second prior moments of the elements in the i-th row and the j-th column of Φk,

k = 1, .., p as follows:
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E(φijk) =




δi

0

j = i, k = 1

j �= i
, V (φijk) =




λ2

k2

ϑ
λ2σ2

i

k2σ2
j

j = i

j �= i

The prior distribution implements the uncertain belief that the first own lag of each series i

is δi and the other coefficients are zero, where the uncertainty with respect to cross-variable

coefficients (i.e. the coefficient relating the series i to a lag of series j, i �= j) is proportional

to the relative variance of the residuals for the respective variables. The tightness of the

‘own’ coefficients relative to the ‘cross-variable’ coefficients is scaled with an additional

factor ϑ. Importantly, the uncertainty decreases with the lag length k, making feasible

the specification of models with large lag length. The overall tightness of the prior is

controlled by the scale parameter λ.

3.2 Dynamic factor Model (DFM)

The DFM framework relates a large panel of economic indicators to a limited number

of observed and unobserved common factors. The premise behind this type of model

is that the economy can be characterised by a small number of factors that drive the

comovements of the indicators in the panel. Rather than summarising indicator data

by means of factor analysis, we use it to extract information contained in sectoral value

added series by including them in the dynamic system. Formally, the model consists of

two different equations: an observation equation and a state equation. The observation

equation relates sectoral value added growth XS
t to the common factors ft that drive the

economy:

XS
t = c+

p∑
k=1

Λkft−k + ut, (2)

where Λk, k = 1, . . . , p are the factor loadings and ut is a vector of item-specific components.

Thus, XS
t is allowed to load on the factors both contemporaneously and on their lags.

Importantly, ft consists of both unobserved and observed factors.4 In our case, the

observed factors are the macro variables XM
t . Following Boivin and Giannoni (2006), we

4In order to estimate the model, we rewrite the model in a static state space form. Observed factors
are treated as ’unobserved factors’ without noise in the observation equation.
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allow ut to be autocorrelated of order one by specifying ut = ψut−1+ξt with ξt ∼ N(0, R).

The joint dynamics of the factor ft are described by the following state equation:

ft =

p∑
k=1

Φkft−k + εt (3)

where Φk, k = 1, . . . , p are coefficient matrices, εt is a vector of white noise innovations, i.e.

εt ∼ N(0,Σ). Moreover, εt and the idiosyncratic shocks ut are assumed to be uncorrelated.

The model is estimated using Bayesian methods. Since it is not possible to derive analytical

results for high-dimensional estimation problems such as the one at hand, we have to rely

on numerical techniques to approximate the posterior. In particular, we use a Gibbs

Sampler, iterating over conditional draws of the factors and parameters. A detailed

account of the step-by-step estimation algorithm is provided in appendix 9.1.

Our choices for the prior distributions are the following. The prior for the coefficients in

the observation equation, Λk, is proper. This mitigates the problem that the likelihood is

invariant to an invertible rotation of the factors. The problem of rotational indeterminacy

in this Bayesian context is discussed in detail in Bäurle (2013).5 We assume that, a

priori, the variances of the parameters in Λk are decreasing with the squared lag number

k, in analogy to the idea implemented in the Minnesota prior that longer lags are less

important. The determination of the coefficients describing the factor dynamics reduces

to the estimation of a standard VAR. We assume a Minnesota-type prior for the parameters

in the state equation.

3.3 Benchmark models

Four different benchmarks, two sectoral and two aggregate ones, complete our suite of

models used in the horse race. All of them can be formulated as a special case of the VAR

described in Section 3.1. The Bayesian estimation procedure can thus be directly applied,

and we get a distribution of forecasts for each of the models. This enables us to evaluate

the density forecasts.

5Bayesian analysis is always possible in the context of non-identified models, as long as a proper prior
on all coefficients is specified, see e.g. Poirier (1998). Note that rotating the factors does not impact the
impulse response functions as long as no restrictions are set on the responses of the factors to shocks.
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The first benchmark model is a combination of VARs, which include the baseline macro

variables, XM
t , plus one sectoral value added series xst and the aggregate of the remaining

sectorsX−s
t . We first estimate this model for each sector separately and then aggregate the

sector forecasts to compute GDP, using nominal value added weights of the last available

time period, ωs,t−1.




xst

X−s
t

XM
t




= c+

p∑
k=1

Φk




xst−k

X−s
t−k

XM
t−k




+ εt (4)

This model has been used e.g. by Fares and Srour (2001) for Canada and Ganley and

Salmon (1997) for the UK to analyse the impact of monetary policy at the sectoral

level. We label it VAR-S to highlight the sectoral component, as it takes into account

the heterogeneity of sectors responding to macroeconomic conditions and shocks.6

The second benchmark model, called VAR-A, is the direct aggregate counterpart to

VAR-S. This model differs only with respect to the target variable such that it includes

GDP yt directly as a variable in the dynamic system.




yt

XM
t


 = c+

p∑
k=1

Φk




yt−k

XM
t−k


+ εt (5)

Ultimately, we have included two univariate AR processes: The AR-S estimates an independent

sectoral process and makes predictions which are then aggregated up, equivalent to VAR-S.

xst = c+

p∑
k=1

φk,s x
s
t−k + εt (6)

The AR-A is again the aggregate counterpart, which has a minimal number of parameters

6This model shows similarities to a ”Global VAR” as proposed by Pesaran and Weiner (2010). It
actually corresponds to a Global VAR in which the weight in the aggregation is the sectoral share in
aggregate GDP, as opposed to weights based on patterns of trade as is typical in Global VARs that model
different countries or regions. An alternative weighting scheme in the case of sectoral variables could be
based on input-output tables. Due to data limitations, we do not pursue this avenue.

11



12 13

and is a natural choice as a simple but competitive benchmark for forecasting GDP.

yt = c+

p∑
k=1

ϕk yt−k + εt (7)

3.4 Specification

We set the number of lags to four for all models. The relative point forecast performance

neither increases nor deteriorates systematically when using only one lag instead, but

density forecasts tend to worsen.

The prior means, δi, are set to zero in the specification for the autoregressive coefficients.

Following Banbura et al. (2010), the factor ϑ, controlling the relative importance of other

lags relative to own lags, is set to one. This allows us to implement the Minnesota prior

with a (conjugate) normal inverted Wishart prior (see e.g. Karlsson (2013)). The overall

scaling factor of the prior variance, λ, is chosen according to recommendations by Banbura

et al. (2010) based on an optimisation criterion for VARs of similar size, and summarised

in Table 1.7 We take 20,000 draws from the posterior distribution, whereas in the DFM

case, we discard an additional 2,000 initial draws to alleviate the effect of the initial values

in the MCMC algorithm.

We assess properties of the estimation algorithm in the DFM case using a set of different

diagnostics. Geweke’s spectral-based measure of relative numerical efficiency (RNE, see

e.g. Geweke (2005)) suggests that efficiency loss of the algorithm due to the remaining

autocorrelation in these evaluated draws is minimal.8 The efficiency loss is less than 50

percent for almost all the parameters, i.e. vis-à-vis a hypothetical independence chain,

we need no more than half the amount of additional draws to achieve the same numerical

precision. Moreover, with a value between 7 and 9, depending on the sample, the maximum

inverse RNE is well below the critical threshold discussed in the literature (see e.g. Carriero

et al. 2014, Baumeister and Benati 2013 or Primiceri 2005). Additionally, we investigate

7Note that in principle, it is possible to estimate the weight based on marginal data densities (Giannone
and Primiceri, 2015). As we re-estimate our models many times in our forecasting evaluation, and the
calculation of the marginal data density is not available in an analytical form in the DFM case, we refrain
from this. A numerical approximation to the marginal data density is possible in principle, but the
accuracy of such estimators deteriorates with growing dimensionality of the parameter space. See e.g.
Fuentes-Albero and Melosi (2013) for a Monte Carlo study and Bäurle (2013) for an application.

8The spectrum at frequency zero is calculated using a quadratic spectral kernel (Neusser, 2009).
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convergence visually by looking at the posterior means based on an expanding number of

draws, finding no evidence of changes after less than half of the draws.

Table 1 summarises the models and their specifications.

Table 1: Evaluated models and their specifications: Overview

DFM VAR-L VAR-S

Description Dynamic factor
model w/ all
sectoral and
macro series

Large BVAR w/
all sectoral and
macro series

VAR w/ one
sectoral series at
a time and macro
series

Real variables SVA SVA SVA
# estimated models 1 1 S
# total variables S+M S+M 1+M
Forecast WS WS WS
λ 0.2 0.1 0.2
Reference equation (2),(3) (1) (4)

VAR-A AR-S AR-A

Description Aggregate VAR
w/ GDP and
macro series

Univariate AR w/
one sectoral series
at a time

Univariate AR w/
GDP

Real variables GDP SVA GDP
# estimated models 1 S 1
# total variables 1+M 1 1
Forecast D WS D
λ 0.2 large large
Reference equation (5) (6) (7)

Note: (SVA) Sector value added series, (S) The number of sectors, (M) The amount of macro variables.
Forecast describes how the aggregation of the forecasts to GDP is done: (WS) GDP is the weighted sum
of the sectoral growth forecasts, (D) GDP growth is directly forecast.

4 Data

We fit the models to production-side national account data for Switzerland and the euro

area. Real value added time series on a quarterly frequency are provided by the Swiss

Confederation’s State Secretariat for Economic Affairs (SECO, starting in 1990) and

Eurostat (starting in 1996) respectively. In contrast to the quarterly GDP series for

13
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the US, the estimation of GDP in Switzerland and in the euro area are both calculated as

the sum of the individual production sectors. Switzerland publishes the production-side

at a slightly more disaggregate level than Eurostat. For instance, banking and insurance

services are reported as separate accounts in Switzerland (and together account for a tenth

of GDP) but are merged together in the euro area (where the equivalent share is less than

5 percent of GDP). Overall, the models include a diversified set of industry and services

sectors - 13 for the Swiss models and 10 for the European models - which together sum

up to GDP.9 A full descriptive summary of the sectoral series, their volatility, correlation

with GDP and autocorrelation is documented in Tables 2 and 3.

These two tables also report the descriptive statistics for total GDP growth rates. The

aggregate picture is very similar for Switzerland and the euro area: In the estimation

sample, the mean of quarterly GDP growth was 0.38 and 0.39 percent, respectively. Euro

area GDP growth is only marginally more volatile. The persistence of aggregate growth

rates, measured as the first-degree autocorrelation, is higher in the euro area, but overall,

the aggregate characteristics of both GDP series display a high degree of similarity. Figure

1 shows, however, that the downturn during the Great Recession was much more severe

in the euro area than in Switzerland.

At the disaggregated sectoral level, the Swiss series are, without any exception, more

volatile than their euro area counterparts and less correlated with the aggregate dynamics,

indicating that sector-specific features play a larger role in Switzerland. Manufacturing

production, typically a sector that shows a high correlation with GDP, is the only series

with a contemporaneous correlation coefficient higher than 0.50.

Besides the growth path of aggregate GDP, Figure 1 shows the time series of cross-sectoral

standard deviations of sectoral value added growth. Cross-sectoral dispersion is higher

in Switzerland throughout the entire estimation sample. It tends to be countercyclical;

dispersion typically peaks in recession episodes. Furthermore, the strongest and weakest

growing sectors for every quarter are displayed in grey. While these tail sectors are closely

related to aggregate dynamics in the euro area, the divergence in Switzerland is striking.

9An advantage of using the production side to forecast GDP is that it is not necessary to produce a
forecast for the inventories, which are often not explicable and therefore hardly predictable.
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Figure 1: GDP growth and its dispersion: Time series

Note: Aggregate vs. disaggregate time series in Switzerland and the euro area. The cross-sectoral standard
deviation in a given quarter is displayed in blue; both the highest and lowest sectoral growth rates in the
respective time period are given as grey.

Another measure of comovement can be obtained by computing each sector’s correlation

with aggregate value added, as in Christiano and Fitzgerald (1998), weighted by the

respective nominal shares. We repeat the computation in a rolling window of two years

and get a time-varying estimate of sectoral comovement that is displayed in Figure 2.10

While the level of comovement is on average higher in the euro area, it is also subject to

stronger fluctuations. In both economic areas, regimes of high and low comovement can

be identified. In general, recessions are associated with high comovement, indicating that

economic contractions often affect a large share of the production sectors, but booms can

as well, as the economy expands on a broad base. These series allow us to assess whether

the forecasting performance varies with the degree of comovement in the target variables.

In addition to the value added series, a set of observable macro factors enters the system

of equations. Key economic variables include inflation (CPI and HICP, in log differences)

and the nominal short-term interest rates (CHF Libor and Euribor). As Switzerland is a

small open economy, in the Swiss models we add a nominal effective exchange rate vis-à-vis

its most important trading partners as well as a measure of world GDP. Both series are

10The comovement time series is defined as ρct =
∑S

s=1 ωs,t−1 ρ
s
t , where ρst is the correlation coefficient

of GDP and the growth rates of each sector s over the 8 quarters subsequent to time period t.
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Figure 2: GDP growth and sectoral comovement: Time series

Note: Aggregate vs. disaggregate time series in Switzerland and the euro area. Sectoral comovement is
calculated as a weighted correlation coefficient of each sectoral value added with the aggregate, with a
rolling window of 8 quarters.

weighted with respect to exports and are defined in log differences.

Our evaluation is based on pseudo out-of-sample forecasts because the availability of

real-time vintages is too limited. We use a dataset based on the first quarterly vintage

of 2018, which contains data between 1990-Q1 and 2017-Q4 for Switzerland and 1996-Q1

and 2017-Q4 for the euro area. The next sections describe the evaluation exercise and the

results in detail.
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Table 2: Sectoral value added growth Statistics for Switzerland

Variable Share Mean Std Corr Auto

GDP 100.00 0.38 0.57 1.00 0.50
Manufacturing (10-33) 19.44 0.48 1.66 0.73 0.23
Energy (35-39) 2.36 -0.08 2.72 0.11 0.10
Construction (41-43) 5.50 -0.01 1.42 0.14 0.21
Trade, repair (45-47) 14.16 0.47 1.07 0.49 0.66
Transportation, ICT (45-53, 58-63) 8.38 0.33 1.13 0.38 0.60
Tourism, gastronomy (55-56) 2.02 -0.08 2.06 0.33 0.31
Finance (64) 6.07 0.51 3.52 0.43 0.34
Insurance (65) 4.33 1.02 0.87 0.13 0.83
Professional services (68-75, 77-82) 15.31 0.29 0.57 0.36 0.56
Public administration (84) 10.39 0.26 0.42 0.19 -0.00
Health, social services (86-88) 6.46 0.70 0.83 0.16 0.20
Recreation, other (90-96) 2.10 -0.07 2.38 0.14 0.45
Taxes (+) and subsidies (-) 3.47 0.45 0.93 0.39 0.36

Note: NOGA codes in brackets. Share is the average of nominal sectoral value added as a share of
GDP between 1990 and 2017. Mean and standard deviation of quarterly log differences, as well as their
correlation with aggregate real GDP growth and first-degree autocorrelation.

Table 3: Sectoral value added growth statistics for the euro area

Variable Share Mean Std Corr Auto

GDP 100.00 0.39 0.59 1.00 0.66
Industry (C-E) 19.01 0.40 1.47 0.88 0.54
Construction (F) 5.16 -0.09 1.09 0.59 0.29
Trade, transport, tourism (G-I) 17.46 0.42 0.76 0.92 0.54
ICT (J) 4.22 1.21 1.11 0.54 0.35
Finance, insurance (K) 4.52 0.32 1.01 0.34 0.28
Real estate (L) 9.82 0.41 0.45 0.24 -0.03
Professional services (M-N) 9.37 0.54 0.96 0.82 0.40
Public administration (O-Q) 16.98 0.28 0.18 0.26 0.21
Recreation, other (R-U) 3.17 0.29 0.49 0.57 0.40
Taxes (+) and subsidies (-) 10.27 0.31 0.94 0.63 0.07

Note: NACE Rev.2 codes in brackets. Share is the average of nominal sectoral value added as a share of
GDP between 1996 and 2017. Mean and standard deviation of quarterly log differences, as well as their
correlation with aggregate real GDP growth and first-degree autocorrelation.

17



18 19

5 Evaluation of point forecasting performance

We conduct an out-of-sample forecast evaluation exercise where we assess the models’

accuracy in terms of predicting growth in the aggregate.

Out-of-sample forecasts are produced for the twelve years between 2005-Q1 and 2016-Q4.

The size of the training data sample (1990-Q1 to 2005-Q1 for Switzerland and 1996-Q1

and 2005-Q1 for the euro area) is sufficient to produce stable estimation results. The last

year of the sample is cut off, because end-of-sample data is often subject to substantial

future revisions and should not be interpreted as the final vintage (Bernhard, 2016). For

this reason, 48 complete vintages are evaluated.

As the models are geared toward capturing complex, dynamic interlinkages in the national

accounts, we do not focus on the predicted growth in any specific quarter h periods in

the future, but want to assess the models’ capability to forecast cumulative growth over a

range of quarters. For the short run, we produce iterated forecasts for the first four periods

ahead; the cumulative sum commensurates to a year-on-year growth rate. The respective

evaluation for the second year to be forecasted, which consists of the projected growth from

5 to 8 quarters ahead, is denoted the medium run. This resembles the forecasts conducted

by the ECB Survey of Professional Forecasters (SPF), where survey respondents are asked

to provide forecasts over a rolling horizon, that is an annual growth rate for the quarter

one (two) years ahead of the latest available observation.

If yt is the log difference of the realised target variable from t = 1, ..., T , then the cumulative

growth over four quarterly periods is denoted as ỹt|t−h =
∑h−1

i=h−4 yt−i. Accordingly, ŷt|t−h

is the cumulative sum of the four steps leading up to the h quarters ahead. Errors are then

defined as the difference from the cumulated quarterly growth rates, eh,t ≡ ŷt|t−h − ỹt,t−h.

For the euro area, forecasts from the Survey of Professional Forecasters (SPF), conducted

and published by the European Central Bank, are used as an additional benchmark. Note

that all models under evaluation fight an uphill battle against the Survey of Professional

Forecasters due to the frequency of real-time data releases. Given that all models described

rely on national accounts data only, forecasts for all quarters ahead can be updated

approximately 30 days into the quarter, when the first estimate is released. The SPF
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benchmark, however, is produced almost a quarter later. As the SPF not only relies on

national accounts data but also on respondents’ judgement of a set of early indicators, this

extra quarter gives the forecasters a sizeable informational advantage. As an illustrative

example, a sample of around 50 respondents to the survey submit their forecast in early

2015-Q1, at which point national accounts data for the preceding quarter have not yet

been published, making 2015-Q3 the target period. The rolling forecast horizon for one

year ahead of the latest available observation therefore effectively implies a forecast horizon

of only 3 quarters, giving the SPF a considerable head start.

The following section presents and discusses the relative performance of the competing

models. The absolute performance, where every model’s capabilities in terms of bias and

efficiency of short-run forecasts are evaluated by means of Mincer-Zarnowitz regressions,

is displayed in the appendix.

5.1 Relative performance of aggregate forecasts

The relevant metric by which we compare errors across models is the square root of the

mean squared error (RMSE):

RMSEm,h =

√√√√ 1

T

T∑
t

e2m,h,t

The respective measures are displayed as part of Table 4 and summarised in Figure 3.

To keep the representation of the results tractable, we do not report measures for all

forecast horizons separately, but restrict ourselves to two horizons: The short run (SR) is

the cumulative forecast error over the first two quarters and the medium run (MR) is the

cumulative forecast error over eight quarters. As the uncertainty to forecast a path over

several quarters increases in h, so does the expected forecast error.

Furthermore, we use a test following Diebold and Mariano (1995) to assess whether the

difference of squared errors of a given model and that of a simple benchmark is statistically

significant. As a benchmark we use the simplest of our models, the autoregressive process
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Figure 3: Root mean squared errors compared

of the aggregate target variable, AR-A.

e2m,h,t − e2AR-A,h,t = βDM + ut, H0 : βDM = 0

Table 4 contains the results. If the regression coefficient is negative, the respective model

has beaten the benchmark on average over the evaluation period.

Table 4: RMSE and Diebold-Mariano test coefficients

DFM VAR-L VAR-S VAR-A AR-S AR-A

Switzerland
RMSE SR 1.81 1.88 1.85 1.89 1.83 1.83

MR 1.70 1.96 1.83 1.96 1.84 1.93
Diebold-Mariano: βDM SR -0.06 0.19 0.10 0.21 -0.00 -

(0.46) (0.76) (0.86) (0.83) (0.22) -
MR -0.84 0.11 -0.38 0.10 -0.33 -

(0.43) (0.46) (0.44) (0.69) (0.10) -

Euro area
RMSE SR 2.55 3.19 2.85 2.52 3.29 3.36

MR 2.60 4.32 3.15 2.47 5.39 4.18
Diebold-Mariano: βDM SR -4.77 -1.08 -3.12 -4.91 -0.43 -

(3.90) (1.66) (1.21) (2.61) (0.57) -
MR -10.75 1.16 -7.49 -11.40 11.58 -

(11.66) (2.32) (6.85) (10.26) (10.69) -

Note: Newey-West standard errors in brackets

20

For Switzerland, the different models produce short-run forecasts that are not significantly

different from each other.11 With a longer forecast horizon, a significant pattern emerges:

The DFM has the lowest errors over the medium run, with an improvement of 12 percent

relative to the aggregate AR. According to our test procedure, this difference is significant

at the 10 percent significance level. In contrast, the VAR-L, which relies on the same

variables but does not impose the factor structure, performs substantially worse than the

DFM. This indicates that shrinking the parameter space by using the factor model proves

to be crucial for medium-run forecast performance.

Among the simpler benchmarks, the RMSE show that in Switzerland, where sectoral

comovement is relatively weak, using disaggregated series helps to improve the medium-run

forecast: Both the sectoral AR-S and VAR-S beat their aggregate counterparts.

Errors for euro area GDP forecasts are generally higher, especially in the medium run.

This can partly be explained by a limited training sample for estimation and the fact that

the downturn during the Great Recession was much more severe in the euro area than in

Switzerland and that such strong fluctuations are difficult for any model to capture. This

is especially true for the univariate models. Indeed, both in the short run as well as in the

medium run, the AR-A and AR-S models perform badly for the euro area.

In the presence of such a large economic shock, more sophisticated models provide superior

results. The short-run forecasts of the DFM and of both VAR benchmarks have errors

that are 24 percent lower than the aggregate AR. All models perform substantially worse

than the SPF in the short run. This is not surprising given that, as mentioned above, it is

produced almost one quarter later, when it is possible to exploit evidence from a broader

set of (monthly) economic indicators that correlate with GDP growth. In the medium run,

the DFM and the VAR-A are competitive with the SPF. These models perform better than

simple benchmarks, even if it is difficult to establish an improvement in terms of statistical

significance.

Overall, these findings show that including sector information can lead to more accurate

point estimates. The best performance, however, comes from the DFM model, which

11The RMSE for h = 1 are depicted in the appendix for reference. The results show that for one quarter
ahead, the DFM and the VAR-S produces the best results.
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simultaneously models the sectoral value added series and macroeconomic variables while

shrinking the parameter space by imposing a factor structure.

5.2 Decomposition of the forecast error variance

One strength of the multivariate models is that they are, in principle, able to capture joint

dynamics between sectors. In the below section, we investigate whether the differences

in performance documented previously are indeed driven by differential capabilities to

capture the joint dynamics. In order to do so, we exploit the fact that in the case of the

sectoral models, the aggregate error is a weighted sum of the sectoral errors, and decompose

its variance into the sum of the sectoral forecast error variances and covariances:12

Var(ey) = Var

(
S∑

s=1

ωses

)

=

S∑
s=1

ω2
sVar(es) + 2

∑
1≤s<ς≤S

ωsωςCov(e
s, eς) (8)

Table 8 and Figure 4 document the two components of the variance of the aggregate error

in equation (8): the weighted sum of the sectoral errors and the covariances between errors

of different sectors. The decomposition for the aggregate models is computed by replacing

the sectoral prediction with the aggregate prediction. That is, we assume that all sectoral

forecasts grow at the same rate, equal to the aggregate one. In Figure 4, the contribution

of the sectoral errors is depicted in grey bars, while the sum of the covariances is shown

in the colour of the respective model.

In both economic areas, the contribution of the covariance of sectoral errors decreases

in absolute and relative terms when sectoral information is included in the models. For

the medium-term forecasts in Switzerland, the error due to the covariance term of the

decomposition is reduced by a third (from 0.15 to 0.10). In contrast, the sectoral error

variance does not vary much across the different models. The VAR-L is almost equally as

successful in capturing sectoral covariance, despite having larger aggregate errors. Using

12Note that the mean squared GDP forecast error in the previous section is the sum of the variance of
the forecast error and the squared bias. Mincer-Zarnowitz regressions suggests that the bias is small, see
9 in the appendix.

22

Figure 4: Decomposition of error variances into a sectoral error
component (grey) and a comovement component (colourised)

euro area data, the reduction in variance of the aggregate error due to lower covariance of

sectoral errors is more distinct. The sectoral models produce substantially lower covariance

terms. The differences between aggregate and disaggregate benchmark models can be

attributed to the differences in the information set and also to the quite rudimentary

construction of the sector forecasts within the aggregate model.

The DFM produces the lowest sectoral error covariance in both economic areas. The

figures in Table 8 show that the superior performance of the DFM is mainly due to a

reduction in the covariance term, and not primarily to better forecasts for single sectors.

This suggests that by modelling sectoral comovement using a factor structure improves

the forecast error by reducing the forecast error covariance.

5.3 The role of sectoral comovement

This section assesses the influence of sectoral comovement on the accuracy of point forecasts.

Taylor (1978) argues, based on analytical considerations, that models using aggregate

series or univariate models for disaggregate series are inefficient if the disaggregate series

exhibit heterogeneous dynamics. At the same time, gains of multivariate disaggregate

models are predicted to be rather small if the series move homogeneously. Therefore, we

would expect that the differences between our models are especially pronounced in periods
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Table 5: Decomposition of the forecast error variance

DFM VAR-L VAR-S VAR-A AR-S AR-A

Switzerland
Variance of aggregate errors SR 0.34 0.36 0.35 0.35 0.36 0.36

Sectoral error variance SR 0.25 0.27 0.24 0.23 0.24 0.23
as a share (0.74) (0.75) (0.67) (0.64) (0.66) (0.63)

Sectoral error covariance SR 0.09 0.09 0.12 0.13 0.12 0.13
as a share (0.26) (0.25) (0.33) (0.36) (0.34) (0.37)

Variance of aggregate errors MR 0.34 0.36 0.35 0.36 0.36 0.38
Sectoral error variance MR 0.25 0.25 0.24 0.23 0.24 0.23

as a share (0.71) (0.69) (0.68) (0.64) (0.66) (0.61)
Sectoral error covariance MR 0.10 0.11 0.11 0.13 0.12 0.15

as a share (0.29) (0.31) (0.32) (0.36) (0.34) (0.39)

Euro area
Variance of aggregate errors SR 0.49 0.81 0.66 0.55 0.82 0.85

Sectoral error variance SR 0.17 0.30 0.26 0.17 0.41 0.21
as a share (0.35) (0.38) (0.39) (0.31) (0.50) (0.25)

Sectoral error covariance SR 0.32 0.50 0.40 0.38 0.41 0.64
as a share (0.65) (0.62) (0.61) (0.69) (0.50) (0.75)

Variance of aggregate errors MR 0.51 1.33 0.71 0.58 1.86 1.29
Sectoral error variance MR 0.17 0.43 0.25 0.12 1.14 0.27

as a share (0.32) (0.33) (0.36) (0.20) (0.61) (0.21)
Sectoral error covariance MR 0.35 0.89 0.46 0.40 0.72 1.02

as a share (0.68) (0.67) (0.64) (0.69) (0.39) (0.79)

of low comovement. In order to assess this hypothesis, we divided the evaluation period

into periods of high and low comovement.13. We calculate the RMSE on the subsample

of errors from high and low comovement periods respectively.

Table 6: RMSE in high/low sectoral comovement regimes

DFM VAR-L VAR-S VAR-A AR-S AR-A

Switzerland
Low comovement MR 1.31 1.95 1.79 2.01 1.60 1.73
High comovement MR 2.01 1.97 1.86 1.90 2.05 2.11

Euro area
Low comovement MR 1.42 5.32 3.27 1.86 6.89 4.98
High comovement MR 3.39 3.00 3.02 2.93 3.35 3.17

Table 6 shows the results in high and low comovement regimes for the medium term.

Systematic differences in the short-term forecasts could not be found. The results in

13This allocation into a ‘high’ or ‘low’ period is defined using the comovement measure as in Christiano
and Fitzgerald (1998) (see Figure 2)
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Table 6 show that the relative model ranking presented in section 5.1 is indeed driven by

low comovement periods to a large extent. The differences between the models is much

less distinct in times of high comovement.

In low comovement regimes, estimating models at the sectoral improves the medium-term

forecasts. As with the results in section 5.1, the univariate AR models in the euro area

are an exception. Here, the aggregate process performs better than the sectoral one.

Furthermore, the VAR-L performs poorly, while the DFM, which not only includes the

sectoral series jointly but also manages to filter relevant information at the disaggregate

level, produces the most accurate forecasts.

In contrast, in times of high comovement, i.e. when the sectoral idiosyncratic factors are

less important and the sectors develop more homogeneously, the gain of disaggregation

is much smaller. The sectoral approach does not lead to a systematic improvement in

the RMSE. Interestingly, the relative forecasting performance of the VAR-L improves

markedly in times of high comovement, while the DFM loses its comparative advantage.

By contrast, we find no systematic differences between times of high vs low growth rates

or high vs low volatility of quarterly GDP growth rates.14

All in all, this exercise shows that when the heterogeneity across sectors is high, 15 models

including sectoral series perform better than their aggregated counterparts. During such

periods, the DFM produces the most accurate forecasts, in line with the original hypothesis

of Taylor (1978).

6 Evaluation of density forecasting performance

Point forecasts do not capture the uncertainty around which a central prediction is made.

Density forecasts have, therefore, become an increasingly popular tool to communicate

how likely it is that the predictions will fit the realisation. We devote this section to the

14An analysis of the time variation in the forecasting performance along the lines of Rossi (2013) turned
out not to deliver major insights due to the short sample; see Figure 7 in the Appendix. However, cumulated
errors (Figure 8) reveal that the DFM’s good performance is attributable to the period before the financial
crisis, while it declines somewhat in the aftermath.

15Regimes of high heterogeneity can, for example, include periods around turning points at the peaks of
a business cycle, as documented by (Chang and Hwang, 2015) for the US manufacturing industries.
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evaluation of the predictive densities of our models. For each model m, we simulate from

the Bayesian posterior distribution of the forecasts in order to determine the density of

the cumulative forecast φ(ŷm,t|t−h).

The fundamental problem of evaluating density forecasts in contrast to point forecasts

is that the actual density is unobserved, i.e. we observe just one realisation, not many

realisations of the same density. A number of methods have been developed to address

this. These include the probability integral transforms (PIT), evaluations based on the

log score and, related to this, the ranked probability score. We discuss the results based

on these measures in the following sections.

6.1 Predictive accuracy: Probability integral transform

To assess whether the predictive density is correctly specified, we compute probability

integral transforms (PIT), i.e. we evaluate the cumulative density of a given forecast up

to the realised value.

PITm,h,t =

∫ yt

−∞
φt(ŷm,t|t−h)dŷm,t|t−h ≡ Φt(ŷm,t|t−h)

A PIT of 0 indicates that, in advance, no probability was assigned to the possibility that

growth could be lower than the realised value of the target variable. If the PIT has the

maximum value of 1, then all the predictive density underestimated the realisation. For

any well-behaved density forecast, the PIT should be uniformly distributed between 0 and

1 (Diebold et al., 1998). On average over time, the probability that the realised value is

lower than the forecasted value should be the same no matter whether we consider high

or low realisations. Figure 5 shows the empirical cumulative distribution of GDP PITs

against the theoretical uniform distribution and its confidence interval.

If they followed a uniform distribution, their empirical cumulative distribution function

(CDF) would follow the 45-degree line. To test this formally, we apply an augmented

version of the Kolmogorov-Smirnov test for uniformity, which accounts for the fact that

model parameters are estimated on a finite sample, as proposed by Rossi and Sekhposyan

26

Figure 5: Empirical cumulative distribution of PIT vs uniform

Note: PITs for ordered realised values are on the horizontal axis, the corresponding distribution of the
realised value (i.e. the fraction of draws that is lower than the corresponding realised value) on the vertical
axis.

(2013). Based on a fine grid r ∈ [0, 1] we calculate

ξm,t|t−h(r) ≡ (1{Φt(ŷm,t|t−h) ≤ r)− r})

for every grid point.16 For low values of r, the indicator is typically zero and thus ξ(r) is

negative but small. For r in the region of a half, dispersion of the ξ(r) vector is highest as

some values are close to 0.5 and some close to -0.5. And for values close to 1, the indicator

function is usually 1, and thus ξ(r) positive and small. For every grid point, we calculate

16Conveniently, one can set the grid r so as to put a special emphasis on parts of the distribution which
are of particular interest, such as lower and/or upper tails.
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the objective, whose absolute value we maximise

κKS = sup
r

∣∣∣∣∣
1√
T

T∑
t

ξm,t|t−h(r)

∣∣∣∣∣

The resulting κKS is evaluated against critical values obtained from a simulation: In a

large number of Monte Carlo replications, we draw T random variables from the uniform

distribution, calculate κ and use the (1−α)-th percentile of all simulations as the critical

value for the α significance level. If κKS > κα, then the test rejects that the empirical

distribution could be the result of a uniform data-generating process at the α percent

significance level. The corresponding p-values are reported in Table 7.

The two left-hand side panels of Figure 5 show the CDFs for Switzerland. The DFM

narrowly follows the pattern of the uniform distribution for most of the distribution, both

for the short run and the medium run. The test of uniformity for the VAR-L cannot

be rejected, although there are some deviations at the lower end of the distribution

for the medium-run CDF. The rather convex CDF of the benchmark VARs (in green)

indicate the opposite: too often, the PITs are at the very high end, indicating that the

models significantly underestimate the probability of high growth rates. The univariate

models, both on the aggregate and sectoral level, have an inverted S-shape. This pattern

is especially pronounced for the medium run and suggests that uncertainty has been

underestimated with these models.

For the euro area, the CDFs show that the PITs are overall less uniformly distributed than

for Switzerland. By inspection, the VARs perform better than the DFM and, of all models

under consideration, this is the one that most closely follows the uniform distribution.

However, for the VAR-S only, the null of a uniform distribution cannot be rejected at the

5% level. Using euro area data, the DFM tends to overestimate the realised values. Over

the entire range, the realised probability is lower than the model implied. However, this

misalignment is also visible for the univariate benchmarks. Overall, density forecasts for

the euro area perform worse than for Switzerland. Again, this may be related to the fact

that the estimation sample is quite short in this case.
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6.2 Relative performance: Ranked probability score

When comparing the predictive densities across models, scoring rules derived from the

concept of PIT are helpful tools. Various scoring rules such as loss functions may help

evaluate models against alternatives (Giacomini and White (2006), Kenny et al. (2012),

Boero et al. (2011)). We separate the argument space of the probability density into

mutually exclusive events, which can be thought of as bins k = (1, 2, ...,K) in the predictive

density of the forecast. We use K = 16 intervals set according to the Survey of Professional

Forecasters.17 Every bin is assigned a probability from the distribution, for example for the

first bin ψm,k,t =
∫ v(k=1)
−∞ φ(ŷm,t|t−h)dŷm,t|t−h. Additionally, we define a vector of length

K with binary values: 1 if the realised value is within the respective bin and 0 otherwise

(dm,1,t, dm,2,t, ..., dm,K,t). Then the inherently Bayesian predictive likelihood score (log

score) would be defined as follows:

Sm,h =
1

T

T∑
t

Sm,h,t, Sm,h,t =
K∑
k

dm,k,tlog(ψm,k,t)

A problem with the log score arose as the specific bin of realisations was assigned a

probability of zero such that the log of zero would be negative infinity for a substantial

fraction of forecasts for the smaller benchmark models. A possible fix would imply reducing

the number of bins to make sure every bin carries positive probability, but this would

ultimately violate the purpose and spirit of the exercise.

We therefore use the ranked probability score (RPS, or Epstein score) as the alternative,

which is a measure of the cumulative probabilities and indicators.

The RPS is defined as follows:

Ψm,k,t =
k∑

j=1

ψm,j,t, Dm,k,t =
k∑

j=1

dm,j,t

RPSm,h =
1

T

T∑
t

RPSm,h,t, RPSm,h,t =
K∑
k

(Ψm,k,t −Dm,k,t)
2

17The partitioning of half a percentage point is used on a grid between annual growth rates from -3 to
4 percent.
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As values are now in the positive range, it is desirable to have them as small as possible.18

Figure 6 summarises the results, which can be found in Table 7 in detail.

Figure 6: Ranked probability score compared

When we perform a test analogous to Diebold-Mariano in the case of point forecasts, but

use the RPS as a loss function (cf. Boero et al. (2011)), the estimated coefficient should

be negative in order to beat the basic AR forecast.

RPSm,h,t −RPSAR-A,h,t = βRPS + ut, H0 : βRPS = 0

In the Swiss case, the RPS of the DFM is lower than that of the other models, and the

VAR-L finishes in second place. The factor structure helps to improve the performance

significantly, especially in the medium run. Among the benchmark models, which all

trail the models that include sectoral interlinkages both for the short and medium-run

evaluation, the more complex ones outperform the simplest ones. We conclude that

allowing for more complex model dynamics as well as interlinkages between sectoral

variables tends to improve the performance of medium-run density forecasts.19

For the euro area, the relative ranking between the large models is different: The VAR

18This measure is a discrete approximation to the measure discussed, e.g., in Gneiting and Raftery
(2007). Evaluating the continuous version using expression (21) in their paper yields similar results, see
bottom row in Table 7. One difference is that the VAR-L and the DFM perform somewhat worse in the
euro area, but the difference is quite small against the backdrop of the estimation uncertainty.

19In parallel to the evaluation of the point forecasts, we may decompose the density of the forecast error
into a marginal and a dependence component using copulas, see e.g. C. Diks and van Dijk (2010). This is
left for future investigation.
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Table 7: Density forecast performance

DFM VAR-L VAR-S VAR-A AR-S AR-A

Switzerland
Mean PIT SR 0.51 0.59 0.56 0.67 0.60 0.65

MR 0.51 0.57 0.64 0.66 0.59 0.63
KS/RS p-value SR 0.31 0.00 0.00 0.00 0.00 0.00

MR 0.30 0.02 0.00 0.00 0.00 0.00
RPS SR 1.82 1.96 2.19 2.18 2.49 2.26

MR 1.89 2.24 2.37 2.57 2.79 2.84
DM test: βRPS SR -0.44 -0.30 -0.07 -0.08 0.24 -

(0.27) (0.26) (0.29) (0.27) (0.15) -
MR -0.95 -0.60 -0.47 -0.27 -0.04 -

(0.37) (0.31) (0.20) (0.27) (0.05) -

Euro area
Mean PIT SR 0.40 0.51 0.45 0.50 0.44 0.50

MR 0.42 0.50 0.48 0.46 0.41 0.49
KS/RS p-value SR 0.00 0.40 0.10 0.38 0.00 0.00

MR 0.00 0.16 0.01 0.07 0.00 0.00
RPS SR 1.91 1.46 1.37 1.37 2.23 2.13

MR 2.33 2.21 2.17 1.89 2.74 2.52
DM test: βRPS SR -0.22 -0.67 -0.76 -0.75 0.10 -

(0.32) (0.30) (0.33) (0.31) (0.10) -
MR -0.19 -0.31 -0.34 -0.63 0.22 -

(0.21) (0.46) (0.24) (0.30) (0.13) -

Note: The mean probability integral transform (PIT) of an unbiased density forecast would be 0.5. The
Kolmogorov-Smirnov/Rossi-Sekhposyan (KS/RS) test rejects uniformity at the p-significance level. The
log score has a negative scale with maximum 0. The ranked probability score (RPS) has positive support
and an inverted scale, i.e. optimum 0, and the respective Diebold-Mariano (DM) test coefficient is negative
if the respective model beats the benchmark model AR-A (Newey-West standard errors in brackets).

models without factor structure beat DFM indicating that the value added of sectoral

information in density forecasting is limited if sectoral comovement is high. In the

short run, the predictive densities are all better than those involving judgment by SPF

participants, despite the latter’s advantage due to publication lag. The density forecasts

for the best performing models even beat SPF in the medium run.

7 Sectoral heterogeneity

Having shown that jointly modelling the dynamics of sectoral production improves point

and density forecasts for aggregate GDP, especially for the medium term, we now analyse

the cross-sectional forecast distribution. For this evaluation, we rely on standard measures
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for multivariate forecasts such as the log determinant of the (weighted) error covariance

matrix and a multivariate mean squared error in the following section. We also propose

two new measures comparing specific aspects of the forecast distribution.

7.1 Multivariate root mean squared error

The cross-sectional forecast distribution can be evaluated using standard measures for the

evaluation of multivariate densities. We follow Carriero et al. (2011) and calculate the

multivariate mean squared error as

Multi-MSEm,h = trace

(
1

T

T∑
t=1

(eSm,h,t)
′M−1 (eSm,h,t)

)

where eSh is the matrix of h-step ahead forecast errors of all sectors over time and M

a weighting matrix with dimensions SxS containing the variances of the sectoral target

series along its diagonal.20

The results are shown in the first lines of Table 8.21 In the Swiss case, we find that simple

univariate models tend to outperform those that model comovement explicitly. The result

is especially pronounced for the VAR with all sectors and macro variables, while the DFM

is more competitive. In the euro area, the DFM is almost as competitive as the benchmark

VARs. Overall, the results suggest that there is a potential gain from explicitly modelling

sectors and their interactions, although simple models may be preferred to complicated

ones in some cases.

This result stands in some contradiction to the evaluation of the (root) MSE in section

5.1 only at first sight. Indeed, the MSE for aggregate GDP and the multivariate MSE

calculated here are closely connected in the sense that both measures are weighted sums

20We use the variances of the 8-quarter growth rates for the short run as well as for the medium run, in
order to obtain more stable results.

21An alternative measure, Bayesian in spirit, considers the natural logarithm of the determinant of the
weighted error covariance matrix:

Log determinantm,h = ln

∣∣∣∣∣
1

T

T∑
t=1

(
M−1/2eSm,h,t

)(
M−1/2eSm,h,t

)′
∣∣∣∣∣

The results are also reported in Table 8. Overall, this measure confirms the results from the multivariate
mean squared error.
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of sectoral forecast errors. Specifically, the MSE for aggregate GDP is a version of the

multivariate MSE, but with a time-varying weighting matrix Mt = ωt−1ω
′
t−1 where ωt

is the vector of nominal shares of the sectors in aggregate GDP.22 Two differences from

the multivariate MSE as specified above appear. First, the weights on the diagonal are

proportional to the squared weight in aggregate GDP. They thus represent the importance

of the sector and not the unconditional variances of the sectors. Secondly, the off-diagonal

elements are not zero, but represent the product of the respective sectoral share in the

MSE for GDP. So the covariances of the sectoral errors are taken into account according

to their weights in aggregate GDP in the RMSE. This is not the case in the standard

implementation of the MSE with a diagonal weighting matrix M . Interestingly, given the

results from the decomposition in section 5.2, we may even expect that the multivariate

MSE does not favour the DFM over the simple models, as the gain in forecast performance

mainly stems from a better description of the sectoral covariances. Taken together, we

think that the evaluation of the RMSE for aggregate GDP is a better summary of the

sectoral forecast performance than the multivariate MSE as specified in this section.

7.2 Alternative measures for sectoral developments

The measures analysed so far aim at providing an encompassing assessment of the multivariate

forecast distribution. This comes with the drawback that it is difficult to know where

the differences in forecasting performance stem from. We therefore now evaluate the

forecasting performance based on two additional criteria geared towards capturing other

relevant aspects of the cross-sectional forecast distribution.

The first measure compares the weighted share of sectors that were correctly projected

to grow above or below their long-term average respectively.23 This reflects the idea that

a model is useful if it is able to tell in which direction the specific sectors are going to

develop.

22This can be seen as follows:

1

T

T∑
t=1

e2m,h,t =
1

T

T∑
t=1

(ω′
t−1e

S
m,h,t)

2 =
1

T

T∑
t=1

(ω′
t−1e

S
m,h,t)

′(ω′
t−1e

S
m,h,t) =

1

T

T∑
t=1

eS
′

m,h,tωt−1ω
′
t−1e

S
m,h,t

23As discussed in the previous section, we think that it is important to take the importance of the sector
for aggregate GDP into account, which is why we have calculated the weighted share.
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The results are shown in Table 8. Using Swiss data, the weighted share of sectors correctly

predicted for the first year forecasted was 58% for the DFM, compared to 46% for the

aggregate AR that assumes all sectors grow the same. Adding sectoral components

improves the share predominantly in the short run (both in Switzerland and the euro

area) and the factor model, while best performing in all cases, adds most of the value in

the medium run.

The second measure assesses how well models predict the dispersion of growth across

the economy as measured by its cross-sectoral standard deviation. The idea behind this

measure is that a model can be useful if it correctly predicts how different the sectors are

from each other, independent of its sectoral point forecast performance.

We construct the measure as follows. Using the draws from the posterior distribution and

draws from the implied distribution of the error terms, we draw from the distribution of

the sectoral series over the forecast sample. For each forecast horizon, we take the mean

of the cross-sectoral standard deviation σ̂s across draws and compare it to the realised

cross-sectoral dispersion in the corresponding time period (σs). The root mean squared

dispersion error is then defined as

RMSDEm,h =

√√√√ 1

T

T∑
t

(σ̂s,t,m,h − σs,t)
2, σ̂s,t,m,h =

√√√√ 1

S

S∑
s=1

(x̂st,m,h −
1

S

S∑
s=1

x̂st,m,h)
2

The results in Table 8 show that, for this measure, the DFM yields the best performance in

the euro area, while it is comparable with the simple benchmarks in Switzerland. However,

it is quite striking that the VAR-L performs worse than the other models in both regions.

This suggests that treating macro variables and sectoral variables symmetrically as in the

VAR-L is probably too crude a way of shrinking the parameter space.
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Table 8: Evaluation measures for sectoral heterogeneity

DFM VAR-L VAR-S VAR-A AR-S AR-A

Switzerland
Multivariate error measures
Log determinant SR -0.32 3.53 -2.20 -4.27 -3.93 -5.05

MR -3.62 -1.98 -4.33 -5.52 -5.58 -6.60
Multivariate MSE SR 20.68 27.05 22.04 21.16 16.14 18.04

MR 17.14 23.36 20.70 18.84 16.52 16.10
Sectoral dispersion
Above/below average SR 0.58 0.53 0.55 0.48 0.55 0.46

MR 0.55 0.51 0.52 0.52 0.51 0.51
RMS dispersion error SR 2.94 3.62 2.08 3.97 1.93 3.97

MR 3.68 8.87 2.56 3.97 2.47 3.97

Euro area
Multivariate error measures
Log determinant SR -7.03 -1.32 -4.68 -7.68 -2.78 -6.79

MR -8.56 -1.37 -7.90 -8.64 -3.28 -6.27
Multivariate MSE SR 15.16 27.98 18.39 41.84 21.20 66.37

MR 16.01 34.45 16.58 17.42 33.05 84.79
Sectoral dispersion
Above/below average SR 0.65 0.59 0.61 0.49 0.60 0.50

MR 0.60 0.53 0.55 0.50 0.57 0.50
RMS dispersion error SR 1.48 3.66 2.52 2.21 3.00 2.21

MR 1.95 11.28 4.48 2.21 8.34 2.21

8 Conclusions

Against the backdrop of an unprecedented deep recession and the extraordinary conduct

of monetary policy over the last decade, the analysis of sectoral heterogeneity in relation

to macroeconomic developments has sparked strong interest among policy makers and

academics. With our analysis, we contribute to the literature by analysing the forecasting

performance of models that are particularly suitable in this respect. Specifically, we

measure the forecasting performance of different models based on the real value added

series of the different production sectors of the economy. In our evaluation, we focus on

medium-term projections for GDP.24

We find quite distinct evidence that a factor model structure performs very well. It very

24Equivalent measures for point and density forecasts of CPI/HICP inflation can be found in the appendix
9.3. The RMSE gain is between 21 (Switzerland) and 29 percent (euro area). Differences among sectoral
and aggregate benchmarks are only marginal, but note that we do not include prices on a sectoral level.
The Dynamic Factor Model performs very competitively. Density forecasts of inflation do not improve
substantially.
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generally outperforms the simple benchmarks, and in many cases also the BVAR. This

is true for both point and density forecasts. In the latter case, the differences tend to

be even more pronounced. Our analysis of the covariance matrix of the sectoral forecast

errors suggests that the superiority of the factor model can be traced back to its ability to

capture sectoral comovement more accurately than its competitors. Moreover, the factor

model tends to outperform the other models also at forecasting sectoral heterogeneity.

In particular, it forecasts more accurately the sectoral dispersion as measured by the

cross-sectional standard deviation of the sectors.

Thus production-side models, and especially the DFM, provide a valuable complement to

demand-side, medium-term models. This is particularly because they allow us to study

how different sectors behave in alternative macroeconomic scenarios.
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9 Appendix

9.1 Detailed model description and estimation method

We provide some details on the estimation procedure, allowing the reader to replicate our

empirical results. Additionally, we provide detailed references to previous work where the

formal derivations of the (conditional) posterior distributions can be found.

As the posterior distribution cannot be derived analytically, we use Markov Chain Monte

Carlo (MCMC) methods to simulate from the posterior distribution. In our setting, this

can be done using a Gibbs sampling approach (see e.g. Kim and Nelson (1999) with one

iteration of the Gibbs sampler involving the following steps:

Step 1: Draw the factors conditional on a set of model parameters

Step 2: Draw parameters in the observation equation conditional on the factors

Step 3: Draw parameters in the state equation conditional on the factors

Iterating over these steps delivers draws from the posterior distribution of the parameters

and the factors. Subsequently, we provide a detailed description of the three steps including

the specification of the prior distribution.

Step 1: Drawing the factors To draw from the joint distribution of the factors

given the parameters in the model, we use the algorithm of Carter and Kohn (1994)

and Frühwirth-Schnatter (1994). The algorithm uses a Kalman filter. In our setting, the

filter has to be adapted for autoregressive errors and potentially co-linear states. See, e.g.,

Anderson and Moore (1979) and Kim and Nelson (1999).

Step 2: Drawing parameters in the observation equation We use an informative

prior on the factor loadings as this ‘identifies’ the factors in the sense that it puts curvature

into the posterior density function for regions in which the likelihood function is flat. See,

for example, the discussion in Bäurle (2013). In our implementation, the prior is centred

such that, a priori, the series are all related with loading one to the unobserved factors

contemporaneously and with loading zero to the lagged factors. However, the variance of
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the prior is chosen to be large, such that if the data is informative about the loadings, this

will be reflected in the posterior distribution.

Regarding the parametric form of the prior, we use the specification of the conjugate prior

described in Bauwens et al. (1999), p.58: The prior distribution p(Rn,Λn | Ψn), where n

denotes the respective row in the observation equation, is of the normal-inverted gamma-2

form (as defined in the appendix of Bauwens et al. (1999)):

Rn ∼ iG2(s, ν)

Λn ∼ N(Λ0,n, RnM
−1
0,n)

Λ0 is the prior mean of the distribution. The parameters s and ν parametrise the

distribution of the variance of the measurement error. M0 is a matrix of parameters that

influences the tightness of the priors in the observation equation. The larger the elements

of M0, the closer we relate the observed series to the factors a priori. The choice of the

tightness is determined by the a priori confidence in the prior belief. We set M0,n,� = �2

for all n and � = 1, . . . , q. Thus the tightness of the prior increases quadratically with the

lag of the factor. Following Boivin and Giannoni (2006), we set s = 3 and ν = 0.001. By

adding a standard normal prior for Ψn, we have specified a complete prior distribution for

the parameters in the observation equation. The derivation of the posterior distribution

is standard, see e.g. Chib (1993) and Bauwens et al. (1999).

Step 3: Drawing parameters in the state equation The procedure for drawing

from the state equation conditional on the factor is identical to the estimation of the

BVAR. We implement a normal Wishart prior for the parameters in the state equation.

The prior mean and variances are of a Minnesota type, following Banbura et al. (2010).

In that notation, we set the prior mean of the first own lag to zero as we model stationary

series. The prior is conjugate, i.e. the conditional densities p(Σ|F,Φ) and p(Φ|F,Σ) can be

shown to be multivariate normal and inverse Wishart densities respectively (see Bauwens

et al. (1999) or Karlsson (2013)). We therefore introduce this additional Gibbs-sampling

step into our MCMC algorithm.
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9.2 GDP nowcast evaluation

For completeness, we test if the models are correctly specified using the Mincer-Zarnowitz

test. Mincer and Zarnowitz (1969) argue that even if estimated coefficients are unbiased,

the resulting forecasts may underestimate high values and overestimate low values. However,

if β0 = 0 and β1 = 1 in the following regression, the forecast is unbiased and high forecasts

are followed by equally high realisations in expectation:

ỹt,t−h = β0 + β1ŷt|t−h + ut, H0 : β0 = 0, β1 = 1

Table 9 reports the respective regression coefficients for the one-quarter-ahead prediction.

We report Newey-West standard errors in brackets (Newey and West, 1987), which are

adjusted for possible heteroskedasticity and autocorrelation.

It also contains other metrics discussed in the article, such as RMSE and RPS, for

GDP forecasts one quarter ahead, to make them comparable to other evaluations in the

literature.

Table 9: Evaluation measures for short-run GDP forecasts

DFM VAR-L VAR-S VAR-A AR-S AR-A

Switzerland
β0 h=1 -0.00 0.05 0.02 0.06 -0.06 0.01

(0.14) (0.17) (0.18) (0.15) (0.44) (0.21)
β1 0.90 0.68 0.81 0.75 0.93 0.80

(0.18) (0.19) (0.24) (0.19) (0.65) (0.25)
RMSE h=1 0.50 0.55 0.53 0.52 0.58 0.55
RPS h=1 0.61 0.64 0.72 0.70 0.85 0.76

Euro area
β0 h=1 -0.02 -0.06 -0.01 -0.11 -0.06 -0.04

(0.14) (0.16) (0.14) (0.16) (0.18) (0.17)
β1 0.66 0.59 0.62 0.66 0.59 0.53

(0.20) (0.19) (0.19) (0.18) (0.22) (0.19)
RMSE h=1 0.60 0.66 0.62 0.64 0.70 0.73
RPS h=1 0.57 0.51 0.56 0.55 0.65 0.69

Note: Regression of the GDP point one-step-ahead forecast on realised values with Newey-West standard
errors in brackets
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9.3 Inflation forecast evaluation

All multivariate models can be used to produce forecasts of CPI (Switzerland) and HICP

(euro area) inflation. Instead of the AR-S and AR-A benchmark, we run a simple

univariate AR of inflation. The following table contains a small subset of the results

analogous to GDP in sections 5 and 6.

Table 10: Evaluation measures for inflation

DFM VAR-L VAR-S VAR-A AR SPF

Switzerland
RMSE SR 1.52 1.89 1.97 1.92 1.89

MR 1.46 1.75 1.85 1.84 1.73
RPS SR 1.42 1.81 2.74 2.31 2.58

MR 1.48 1.84 2.57 2.34 2.43

Euro area
RMSE SR 1.26 1.83 1.47 1.40 1.73 1.00

MR 1.32 1.80 1.38 1.24 1.50 1.12
RPS SR 1.34 1.75 1.92 1.66 1.86 1.52

MR 1.46 1.93 1.93 1.75 1.92 1.40

9.4 Stability over time

To assess dynamic performance, we implement the estimate of the local RMSE as suggested

by Rossi (2013). We set the window to m = 16, i.e. we compute that RMSE over 4 years.

This is lower than the values used in Rossi (2013) (m=25 and m=60). Our choice, dictated

by the short sample, reduces the local bias but decreases efficiency. While no distinct

patterns appear in a visual inspection of these measures (Figure 7), the cumulative errors

in Figure 8 reveal that the DFM performs better than the other models, especially in the

first half of the sample.
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Figure 7: 16-quarter rolling windows of RMSE
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Figure 8: Cumulated relative error
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