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If you can look into the seeds of time, and say
which grain will grow and which will not, speak
then unto me. Shakespeare.1

1 Introduction2

At the beginning of the year 2000, the Swiss
National Bank (SNB) adopted a new monetary policy
framework. The new concept is based on an explicit
definition of price stability and uses an inflation
forecast as the main indicator for guiding monetary
policy decisions.3 Although the forward-looking
approach of the SNB has some similarities with both
the two-pillar concept of the European Central Bank
and with strict inflation targeting – as practised, for
example, by the Bank of England – it is in itself an
original framework for monetary policy.4

What these new monetary policy strategies have
in common is the forward-looking orientation of the
policy decisions necessitated by the long lag between
a monetary impulse and its effect on output and
prices. In Switzerland, for instance, the main impact
on prices is believed to occur between one and three
years after the monetary impulse. Consequently,
inflation forecasts over a horizon of one to three
years are of special importance for central banks as a
basis for decision-making. For this reason, providing
long-run inflation forecasts with various methods
and analysing their properties and accuracy has
recently become an area of intense research. This
paper is an empirical contribution to the literature on
this topic.

Producing accurate inflation forecasts over a
horizon of one to three years is a very difficult task.
Uncertainties about the true structure of the econo-
my and the monetary transmission mechanism force
central banks to use a variety of approaches for fore-
casting inflation rather than to rely on a single
model.5 One approach uses large, structural macro-
economic models.6 These models have the advantage
of producing forecasts for many variables and of
delivering clear economic intuition behind the
dynamics of the forecasts. The problems of large
structural models are the restrictive assumptions that
have to be made in order to identify the structure of
the economy.7 Vector autoregression models (VAR)
constitute a second approach.8 VARs exploit the infor-
mation in macroeconomic time series without impos-
ing strong restrictions relating to the structure of the

economy. Thus, VARs may suffer less from the prob-
lem of data contamination by imposing incorrect
restrictions regarding both the economy and the
transmission mechanism. A further advantage of
VARs comes from the fact that they do not need any
assumptions about the course of exogenous variables
for the period of the forecasting horizon. All vari-
ables in VAR models are endogenous, and the dynam-
ic forecasts are straightforward to compute. When
VARs are estimated, however, the problem of a small
number of degrees of freedom often arises. The num-
ber of parameters to be estimated soon becomes
overwhelming when more and more variables are
included in a VAR. For instance, given the limited
length of the quarterly time series in Switzerland,
VARs can often be estimated with only three to five
variables. Thus, VARs may fail to use part of the rele-
vant information contained in the macroeconomic
data because their size has to be restricted to a small
number of variables. One possible way of overcoming
this problem is to use a series of small VARs and then
to combine their forecasts.9 The aim of this study is to
analyse whether combining forecasts from different
small VAR models can improve the accuracy of single
forecasts by taking information from more variables
into account. The study concentrates on inflation
forecasts for Switzerland.10

The paper is organised as follows: Section 2 dis-
cusses the role of unconditional forecasts in the
process of monetary policy decisions. In Section 3,
the methods for combining forecasts are explained.
Section 4 analyses the time series properties of the
variables and the various VAR models used to produce
forecasts. Section 5 addresses the question of
whether combined forecasts are better than individ-
ual forecasts by looking at out-of-sample results.
Section 6 contains a summing-up.

1 Quoted from Granger (1989,
p. 153).
2 We would like to thank Caesar
Lack, Jean-Marc Natal, Samuel
Reynard, Enzo Rossi, Martin
Schlegel and Peter Stalder for
their valuable comments. We ap-
preciated the discussions with the
participants in our session at the
2001 Meeting of the Swiss Society
for Statistics and Economics in
Geneva and with the participants
of the 2000 Meeting of the
“Arbeitsgruppe Prognosever-
fahren der Gesellschaft für Opera-

tions Research” at Eichstätt Uni-
versity in Ingoldstadt. Any errors
in the paper should be attributed
solely to the authors.
3 See Jordan and Peytrignet
(2001) for an analysis of the role
of inflation forecasts in the new
monetary policy framework.
4 See Baltensperger, Fischer
and Jordan (2002) for a discus-
sion of the characteristic features
of the Swiss monetary policy
framework compared to strict in-
flation targeting.

5 See Kirchgässner and Savioz
(1997) for a discussion of various
econometric approaches.
6 See Stalder (2001) for the
presentation of the large struc-
tural model used by the SNB.
7 The classic critique of large
structural models was formulated
by Sims (1980).
8 See Jordan, Kugler, Lenz and
Savioz (2002) for a description of
the VAR models used by the SNB
in conditional and unconditional
forecasting.

9 A different possibility would
be to use Bayesian VAR methodol-
ogy or to restrict some of the co-
efficients to zero after the appro-
priate testing.
10 Empirical evidence on GDP
forecasts of the Swiss economy
may be found in Ruoss and Savioz
(2002).
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2 Types of Forecasts in Monetary
Policy: 
Conditional and Unconditional 

Two types of inflation forecasts are used in
monetary policy: On the one hand, conditional
forecasts assume a specific path of the future 
course of monetary policy. Thus, they allow the
central bank to evaluate the consequences of alter-
native policy decisions. On the other hand, uncon-
ditional forecasts provide inflation predictions
where the future stance of monetary policy over the
forecasting horizon is explicitly or implicitly predict-
ed as well. 

Unconditional inflation forecasts are produced
for three main reasons. First, they provide a bench-
mark forecast given the observed reaction of the cen-
tral bank to the macroeconomic situation in the past.
Such inflation forecasts are especially important and
informative since the assumptions about the course
of the policy instrument underlying the conditional
forecasts, e.g. a constant interest rate through to
the end of the forecasting horizon, are usually unre-
alistic. Unconditional forecasts are thus important
indicators for the general inflation outlook. Second,
since conditional inflation forecasts cannot be tested
for their accuracy because of their counterfactual
nature, the different models have to be evaluated
according to their performance in unconditional fore-
casting. Thus, the central bank needs to produce
unconditional forecasts for all its models, including
forecasts based on structural models. Third, uncondi-
tional inflation forecasts also allow comparisons with
forecasts from outside the central bank. This enables
the policymaker to judge whether there are differ-
ences between the market perception of the inflation
outlook and his own analysis.

Simple VARs represent reduced forms, i. e., the
parameters of simple VARs have no structural inter-
pretation. Producing conditional forecasts from
simple VARs is problematic, because a given interest
rate is not equivalent to a given monetary policy
course. Furthermore, the estimated coefficients are
not policy-invariant.11 However, VARs are an ideal
method of producing unconditional benchmark fore-
casts because they rely on only a minimum amount 
of structural information, i. e. on the choice of the
variables and on the lag length. Furthermore, unlike
in the case of structural models, exogenous variables
do not have to be forecast. In this paper, we look
only at unconditional inflation forecasts computed

with VAR models and examine whether these fore-
casts can be improved by combining them.

3 Combining Forecasts

The traditional VAR forecasting procedure is
very simple. The forecaster decides on the variables
and the number of lags included in the VAR as well as
on the assumptions about integration, cointegration,
trend, and seasonality of the data. Forecasts are then
produced by using the chosen model. The limited
length of the time series typically available in macro-
economics highlights three basic problems of the tra-
ditional approach. First, only small VARs, i.e., with
only a few variables, can be used for forecasting.
Thus, potentially useful information may be left out
by concentrating on a single model. Second, the
small degrees of freedom may lead to estimated para-
meters with large standard errors, which is likely to
influence adversely the out-of-sample performance
of the forecasts. The traditional approach also has
the disadvantage that the choice of the model does
not primarily depend on past out-of-sample forecast
performance but on the goodness of the fit.

In order to overcome these shortcomings, we
have developed an alternative procedure. It consists
of two steps: First, we compute a large number of
forecasts using a series of small VARs. The small 
size of the VARs allows us to preserve a minimal num-
ber of degrees of freedom. Second, the forecasts of
different models are weighted to produce combined
forecasts.12 We call the forecasts obtained by this pro-
cedure “combined VAR forecasts” (CVARFs). While
many methods are used for combining forecasts, the
present study only covers those most commonly
adopted.13

11 The production of conditional
forecasts with structural VAR
models is dealt with in Kugler and
Jordan (2000) and in Jordan,
Kugler, Lenz and Savioz (2002).

12 See Winkler (1989, p. 606),
for the basic motivation underly-
ing the proposed procedure: “In
most interesting forecasting
situations in our uncertain and
rapidly changing world, I doubt
that such ‘true’ models are attain-
able and I think that it is counter-
productive to think in terms of
‘true’ models. The motivation for

the combination of forecasts,
then, is at its most basic level the
simple idea of aggregation of in-
formation to achieve a reduction
in uncertainty, or an increase in
accuracy.”
13 For descriptions of methods
used to determine the weights,
see, for example, Clemen and
Winkler (1986), Clemen (1989),
and Holden and Peel (1986).
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There are three main reasons why combining
forecasts can be expected to improve their accuracy:
First, it leads to a diversification of the forecast
errors and thus diminishes the problem of imprecise
estimates of individual models.14 Second, combined
forecasts should be more robust, because they do not
depend closely on the specifications applied to an
individual model. The damage done by a specification
error in a single model may thus be greatly reduced.
Third, by taking more variables into account, com-
bined forecasts may be based on a broader informa-
tion set. This is especially relevant for VAR forecasts
which are traditionally based on models with only a
few variables. The gains from combining forecasts
should arise in particular when the weights depend
on the past performance of the individual forecasts.

Further advantages of combining VAR forecasts
may exist. First, the weighting of the various fore-
casts, if determined by their past forecast perfor-
mance, may provide some information on the relative
importance of the different models and variables.
Second, a change in the dispersion of the individual
forecasts can give an early indication of a deteriora-
tion in the forecast accuracy. However, we do not
examine these further issues in the present paper.
Instead we focus on the question of whether CVARFs
are more accurate than VAR forecasts.

The different methods of weighting the fore-
casts, which are used in the subsequent analysis, are
explained with the help of an example where fore-
casts for inflation in time t from three VAR models are
available: π̂VAR1,t, π̂VAR2,t and π̂VAR3,t.

15 The combined
inflation forecast π̂CVAR,t is a weighted average of
these three individual forecasts

(1) π̂CVAR,t = w0 + w1π̂VAR1,t + w2π̂VAR2,t + w3π̂VAR3,t,

where the wi i = 0,…3 are the weights. 

The first very common method of combining
forecasts is to take the simple average (SA) of the
individual forecasts. Accordingly, the weights are
equal for all individual forecasts and sum up to one:

(2) w0 = 0 w1 = 1/3 w2 = 1/3 w3 = 1/3.

In the SA method, the weights do not depend on
the observed past accuracy of the individual fore-
casts.

In contrast to the SA method, the other combi-
nation methods set weights according to the past
performance of the individual forecasts. This is
accomplished with the help of a linear regression with
the actual inflation rate as the dependent variable

and the individual out-of-sample forecasts as ex-
planatory variables. The coefficients may be estimat-
ed with restrictions so that they satisfy some or all of
the properties of weights (0 � wi � 1, �

i
wi =1). In

our example with three forecasts the regression is:16

(3) πt = �0 + �1π̂VAR1,t + �2π̂VAR2,t + �3π̂VAR3,t + εt.

The second combination method we will use is
the ordinary least square method (LS). In the LS-
combined forecast (1), the estimated coefficients of
equation (3) are used as weights to calculate the
combined forecast:

(4) w0 = �̂0 w1 = �̂1 w2 = �̂2 w3 = �̂3.

No restrictions are imposed on the estimation of
the coefficients in Eq. (3). Note that the coefficient
�̂0 is equal to zero for unbiased forecasts.

The third combination method is the constant
restricted least square method (CRLS). The CRLS-com-
bined forecast is assumed to be unbiased and the
constant term of the estimated regression is restrict-
ed in order to be equal to zero:

(5) w0 = �̂0 = 0.

The fourth combination method is the equality
restricted least square method (ERLS). In the ERLS-
combined forecast a further restriction is that the
weights of the forecasts sum up to one. Thus, the
regression (3) is estimated with the following restric-
tions:

(6) �̂0 = 0 and �̂1 + �̂2 + �̂3 = 1.

The fifth and last combination method we will
use is the non-negativity inequality restricted least
square method (NRLS). In NRLS-combined forecasts
the weights are non-negative. The regression (3) is
estimated with the following (non-linear) restric-
tions:

(7) �̂0 = 0, �̂1 � 0, �̂2 � 0, and �̂3 � 0.

In the following section, we will make use of
these five methods for combined forecasts. Our
analysis will seek to establish whether CVAR forecasts
achieve a better performance than individual VAR
forecasts.

14 See, for example, Granger
(1989), Granger and Newbold
(1973, 1986). See Jungmittag
(1993) for an introductory expo-
sition of the diversification argu-
ment.
15 See Aksu and Gunter (1992).

16 The CVARF approach not only
provides a forecast but delivers ad-
ditional information that may be
useful for the forecasters and for
the conduct of monetary policy.
First, CVARFs give a useful indica-
tion of the source of forecast per-
formance. This can be read from
equation (3). Forecasts that yield
no significant coefficient in this
regression contain no information

not already included in the other
forecasts (see Diebold (1989) for a
discussion of forecast combination
and “forecast encompassing” as well
as West (2001) for an appropriate
test for “forecast encompassing”).
Thus, it is possible to infer which
sets of  variables are good predictors
for inflation at a given forecasting
horizon. A non-zero intercept in the
regression is an indication that the

forecasts are biased (see Holden
and Peel, 1989). Second, structural
breaks in the inflation process may
be identified at an early stage
through the analysis of the changes
in the estimated weights (see
Diebold and Pauly, 1986). The likely
source of the structural break may
also be inferred from the change in
the weights. 
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4 Data, Time Series Properties, 
and VAR Models
In order to keep the analysis tractable we

restrict ourselves to five variables: The consumer
price index P, the money aggregate M3, total domes-
tic bank credit C, real GDP Q, and the long-term
Swiss franc interest rate R. Money, credit, economic
activity, and the long-term interest rate are impor-
tant determinants of the inflation process according
to the main theories of the transmission mechanism
of monetary policy.17

The sample period covers the first quarter of
1974 to the third quarter of 2000.18 Table 1 presents
the Augmented Dickey-Fuller Unit Root test for the
five variables. The logs of all five variables will be
assumed to be I(1) in the rest of the paper.19 We only
consider VAR models with stationary variables. Thus,
all variables enter the models as first differences. For
the purpose of this paper, we do not take cointegra-
tion and vector error correction specifications into
account.

The VAR models considered include a constant
and four lags. No trend or seasonal dummies are
allowed for.20 All VARs have to include at least the
inflation rate πt. Thus, the smallest VAR just includes
πt. The largest VAR includes all 5 variables. Within
this setup it is possible to specify 16 different VAR
models: 1 model with 1 variable, 4 models with 2 vari-
ables, 6 models with 3 variables, 4 models with 4
variables and 1 model with 5 variables.

Combined forecasts are only constructed from
forecasts of VAR models with the same number of
variables. Given this restriction, 79 different com-
bined forecasts can be specified: 11 combinations of
forecasts from models with 2 variables, 57 of fore-
casts from models with 3 variables and 11 from mod-
els with 4 variables (see Table 4).

17 The study by Jordan (1999a)
has shown that credit aggregates
are good predictors of inflation.
For the importance of monetary
aggregates for inflation, see Bal-
tensperger, Jordan and Savioz
(2001) as well as Kirchgässner
und Savioz (2001). 
18 Note that the variability of in-
flation has recently been very

21 Thus no VAR is estimated with
less than thirty observations.

small around a low level of infla-
tion. Therefore the latest data are
not very appropriate for testing
the performance of models to
forecast (high) inflation.
19 See Miller, Clemen, and
Winkler (1992).
20 The variables are seasonally
adjusted.

5 Out-of-Sample Forecasts

In this section, we examine the possibility of
achieving better forecasts by combining forecasts. We
compare the performance of CVARFs with the individ-
ual VAR forecasts (VARFs). Both the average perfor-
mance of VARFs and CVARFs as well as the perfor-
mance of the best VARFs and CVARFs will be
compared. We concentrate on forecasts of the annual
inflation rate

(8) πt = 100*log(Pt /Pt –4)

and consider the forecasting horizons of one, two,
and three years. These are the most relevant horizons
for monetary policy.

To assess the accuracy of the forecasts, we use
the root mean square error statistics (RMSE)

(9) RMSE =�1/T �(πt – π̂t)2,

where πt is the actual inflation and π̂t is the predict-
ed inflation for time t. The difference πt – π̂t is the
forecast error and T is the number of forecasts. The

mean squared forecast error (MSE = 1/T �
T
(πt – π̂t)2)

is a measure of the size of the average forecast errors.
Due to squaring of the forecast errors, large forecast
errors are given a proportionally higher weighting
than small ones. The dimension of the root mean
squared error (RMSE) corresponds to that of the
inflation rate πt. If the forecasts are perfect, the
RMSE is equal to zero.

The analysis considers only out-of-sample fore-
casts. As put forward by Bernanke (1990) and Thoma
and Gray (1994), among others, the ultimate decision
about the usefulness of a forecasting model must
come from its ability to forecast out of sample. Supe-
rior in-sample forecasting ability does not automati-
cally mean superior out-of-sample forecasting ability. 

The forecasts are computed with rolling regres-
sion methods: A rolling estimation of the VAR models
yields a series of out-of-sample individual VAR fore-
casts for different forecasting horizons k = 4, 8, 12.
The forecasts for the horizon of k quarters are com-
puted as follows: First the VAR is estimated with
observations running from time s to time s – 29,
where s is the period after which the first forecast
starts.21 The estimated coefficients are then used to
compute the forecast for time s + k. For the forecast
for time s + k only information available in time s is
used. Then, the sample is enlarged by one period and
the equation is re-estimated with data running from 

T

t=1

t=1
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22 When the forecast horizon in-
creases by one year, the sample
for the evaluation of the com-
bined forecasts decreases by two
years (see Table 2 and following).
The first year is lost because few-
er forecasts can be computed with
a given data set when the forecast
horizon becomes larger. Similarly,

the second year is lost because
fewer combined forecasts can be
computed with a given set of fore-
casts when the forecast horizon
becomes larger.
23 The Theil U statistic  is
defined here as in Greene 
(2000, p. 310).

24 See Jordan (1999b) for
another piece of evidence.

s +1 to s – 29. The re-estimated coefficients are now
used to compute the forecast for time s + 1 + k. This
procedure is continued until the end of the available
data, but the estimation sample is held constant
when it reaches 50 observations. With this technique,
73 one-year-ahead individual forecasts from 1982:3
to 2000:3, 69 two-year-ahead individual forecasts
from 1983:3 to 2000:3 and 65 three-year-ahead indi-
vidual forecasts from 1984:3 to 2000:3 can be com-
puted.

Combined forecasts are obtained by using
weights computed by the five methods discussed
above. For the calculation of these weights, rolling
regression techniques are applied. The regression 
of Eq. (3) is run with the first 30 individual fore-
casts to produce the first combined forecast for time
s + 2k + 29, where s + k is the quarter for which the
first individual forecast with horizon k is available.
Then the regression is run with the first 31 individual
forecasts to produce the combined forecast for quar-
ter s + 2k + 30. This procedure is continued until the
end of the available data, but the number of individ-
ual forecasts used in the regression is again held con-
stant after reaching 50. This procedure allows us to
produce 39 one-year-ahead combined forecasts from
1991:3 to 2000:3, 31 two-year-ahead combined fore-
casts from 1993:3 to 2000:3 and 23 three-year-ahead
combined forecasts from 1995:3 to 2000:3.22

During the period from 1991:1 to 2000:3 actual
inflation averaged 1.9%, with a maximum of 6.1% and

a root mean square (RMS = 1/T ��πt
2/T ) of 2,62%.

For the period 1993:1 to 2000:3 inflation averaged
1.2%, with a maximum of 3.4% and an RMS of
1.54%. During the period from 1995:1 to 2000:3
inflation averaged only 0.9% and was consistently
below 2%. The RMS was 1.09%. Since it is preferable
to evaluate the forecasting performance over a
period when inflation shows some variation, we do
not present the results of the different forecasting
horizons for a common sample.

The change in both the volatility and the level of
inflation makes it more difficult to assess the fore-
cast performance of the models between different
forecasting periods and horizons. One possibility to
compare the forecast accuracy between different
periods is to look at Theil’s U23

The U statistic relates the RMSE of the inflation
forecasts to the RMS of the actual inflation. This
scales the forecast errors relative to the level of infla-
tion because absolute forecast errors tend to be
smaller in periods of low inflation than in periods of
high inflation. Furthermore, Theil's U allows the per-
formance of a model to be judged relative to a simple
forecast of no change in the price level (i.e. zero
inflation). The inequality coefficient U is equal to one
if the model has the same predictive power as the
simple forecast. If U is smaller (bigger) than one, the
model yields more (less) precise forecasts than the
simple forecast of no change. One should, however,
be aware that a simple forecast of no change in the
price level may in some circumstances be a very good
forecast. A U statistic higher than one would then not
indicate a poor forecast performance per se. This is
especially valid for the period from 1995:1 to 2000:3,
when a forecast of a constant price level would have
been quite acceptable. Over this period of almost six
years, the increase in the price level was only 4.3%,
or 0.75% a year. Consequently, for forecasts within
the period from 1995:1 to 2000:3 with a horizon of
three years, a U statistic that is bigger than one may
not necessarily reflect a bad performance.

In Table 2, we show the results of the out-of-
sample performance of individual VAR forecasts.24 We
report average results for different groups of VAR
models. In general, as the RMSE and the U statistics
show, the performance deteriorates as the length of
the forecasting horizon increases. The row with one
variable (n = 1) corresponds to an AR(4) model of the
change in the price level. This model serves as a
benchmark. On average, the other VARFs outperform
this benchmark. The forecasts with VARs with four
variables (n = 4) perform best on average for the
one-year forecasting horizon. For the two-year-fore-
casting horizon VARs with three variables (n = 3) per-
form best on average, but the difference to the VARs
with four variables (n = 4) is only very small. For the
three-year-ahead forecasts, VARs with three variables
(n = 3) achieve on average the best results, followed
by bivariate VARs (n = 2) and the VARs with four vari-
ables (n = 4). The performance of the single VAR with
five variables (n = 5) is not particularly good. This
may be attributable to a small number of degrees of
freedom in the estimation of this VAR. The results
show clearly, at least for one-year-ahead and two-
year-ahead forecasts, that including additional vari-
ables improves the performance. 

T

t=1

(10) U =             =                             .
RMSE

RMS

�1/T �(πt – π̂t)2
T

t=1

1/T ��πt
2/T

T

t=1



SNB 86 Quarterly Bulletin  4/2003

5.1 Comparison with the average
performance of the VARFs
How do CVARFs perform compared to VARFs? In

the following we will compare the performance of the
CVARFs to the average performance of the VARFs as
reported in the first row of table 2. Table 3 reports
the average RMSE and U of the 79 CVARFs for the dif-
ferent combination methods. The table also indicates
the improvement from combining forecasts relative to
the average of all individual VAR forecasts. The simple
average method (SA) performs quite well for each
forecasting horizon. For the one-year forecasting
horizon, SA is even the best method for weighting the
individual forecasts. An advantage of this method is
that the weights do not have to be estimated. The
least square method (LS) performs very poorly at any
forecasting horizon. Restricting the constant to zero
(CRLS) improves the performance substantially for
the two-year and the three-year forecasting hori-
zon.25 For the three-year forecasting horizon, CRLS is
the best method. Imposing the equality restriction,
which requires the weights to sum up to one (ERLS),
improves the performance only for the one-year fore-
casting horizon.26 The method of restricting the
weights of the forecasts to be non-negative (NRLS)
achieves good results for the two- and three-year-
ahead forecasts. It is even the best method for the
two-year forecast horizon. 

Imposing constant weights (SA) works well
especially for short forecasting horizons. However,
for longer forecasting horizons, it seems important to
let the weights change over time by re-estimating
them in each period. But, as the poor performance 
of LS shows, restrictions should be imposed in the
estimation of the weights. Whereas ERLS seem not 
to impose the right restriction to estimate the
weights, CRLS and NRLS perform well. If the individ-
ual VAR forecasts are very similar but not identical,
CRLS is still numerically feasible, whereas the NRLS
may not be.27

For the subsequent analysis we concentrate on
the best methods for each forecasting horizon. For
the one-year horizon, we use SA. For the two-year
horizon, we may choose between CRLS and NRLS. The
results are very similar. In order to avoid possible
numerical problems, we opt for CRLS rather than
NRLS. CRLS is also the best method for the three-year
horizon. 

Table 5 reports the results for different sub-
groups of the CVARFs. As a benchmark, the results of
the average of the VARFs and the CVARFs are reported

in Table 5 as well. We form two different subgroups of
79 combined forecasts. First, we form subgroups for
all combined forecasts that are computed from the
same number of VARFs. For instance, the group m = 2
consists of all 27 combined forecasts that are formed
with two individual forecasts. These individual fore-
casts may stem from VARs with 2, 3, or 4 variables.
Second, we form subgroups of combined forecasts
that are computed from VARFs with the same number
of variables. For instance, the subgroup (n = 2) con-
sists of all 11 combined forecasts that are computed
from forecasts of individual VARs with 2 variables. The
combined forecasts may include 2, 3, or 4 individual
forecasts. The subgroups are illustrated in Table 4.

The results show very clearly that the more fore-
casts are combined, the better the forecast perfor-
mance becomes. The improvement is monotone with
an increasing number of combined forecasts. If 6
forecasts (m = 6) are combined, the RMSE decreases
by more than 20% compared to the average of the
VARFs. This improvement may be due to either the
diversification effect (more forecasts) or the infor-
mation effect (more variables). The findings also
show that combinations of forecasts of VARs with 3 or
4 variables (n = 3, n = 4) achieve on average a bigger
improvement of the RMSE than combinations of
forecasts from bivariate VARs (n = 2). Somewhat odd
are the results for the two-year horizon, where the
combinations of forecasts from VARs with 4 variables
(n = 4) do not perform very well. 

25 On the CRLS-method see also
Granger and Ramanathan (1984).
26 On the ERLS-method see also
Clemen (1986).
27 The weights of the previous
regression are used if the new
regression yields no numerical
results.
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5.2 Comparison with the best VARFs

The results of the analysis so far show that com-
bining forecasts from different models can, in gener-
al, improve the precision of the forecasts, provided
that an adequate combination method is chosen. This
finding was based on a comparison of the average
performance of CVARFs with the average performance
of VARFs. Two questions arise: First, do any individual
VARFs substantially outperform the averages of the
combined forecasts? Second, is it possible to identify
which combinations perform better and whether it
might be advantageous to concentrate on some spe-
cific combinations? We will therefore look more close-
ly at the performance of the best performing VARFs
and CVARFs. 

Table 6 presents the results for the three best
VARFs for each forecasting horizon. A comparison
with Table 3 shows that for the one-year forecasting
horizon the best VARFs outperform the average
CVARFs (all weighting methods). For the two-year-
ahead forecasts only the two best VARFs outperform
the average CVARF computed with the CRLS method.
The best VARF, however, is not better than the aver-
age CVARF computed with the NRLS method. For the
three-year forecasting horizon, the best VARF per-
forms worse than the average CVARF computed either
by the CRLS or the NRLS method. Note also that the
best VARs do not include all variables, especially at
long forecasting horizons. The results set out in Table
6 indicate that combining forecasts is especially
important for long-term forecasts.

Table 7 compares the result of the best VARF
with the three best CVARFs for each forecasting hori-
zon. Using the simple average (SA) method, the best
CVARF outperforms the best VAR forecasts by 9% for
the one-year forecasting horizon. However, for
longer forecasting horizons, the best CVARF (CRLS)
improves the RMSE by more than 30%. This is a sub-
stantial improvement in the forecast accuracy. For
the two (three)-year forecasting horizon 59 (49) out
of the 79 possible CVARFs achieve lower RMSE and U
than the best VARF. 

Can the best combination be identified? It is
interesting to note that the three best models for any
forecasting horizon include, without exception, all
five variables considered in this analysis. Note also
the following interesting result: For the one-year
forecast horizon, only three out of fifteen possible
combinations (number of two forecasts of trivariate
VARs) use information from all variables. The best
CVARF is among these three combinations. This may

point not only to a “diversification advantage” but
also to an “information advantage” of combined fore-
casts over individual forecasts. One piece of practical
advice may be to combine VARFs in such a way that a
large number of variables is taken into account in the
CVARF.
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6 Conclusions

Unconditional inflation forecasts are important
for the conduct of monetary policy, and VAR models
are well-suited to producing such unconditional fore-
casts. Given the limited amount of data typically
available in macroeconomic studies, however, VARs
have the disadvantage of being restricted to a small
number of variables. We have developed a modelling
approach to compute unconditional forecasts that
overcomes the problem of a limited number of vari-
ables. The procedure exploits the properties of com-
bined forecasts and proceeds in two steps: First, a
large number of VAR forecasts, stemming from mod-
els specified in various ways and including different
variables, are computed. Second, the weights for
combining the forecasts are determined according to
the past performance of the forecasts. Then the
unconditional combined forecasts are computed
using these weights. With this approach, “real-time”
information on the forecast accuracy and possible
structural breaks may be extracted from the change
of weights. Furthermore, the weights may show which
group of variables incorporate information about
future inflation for a specific forecasting horizon.

The results of this paper show that, on average,
the combined inflation forecasts computed with the
developed approach outperform the best VAR fore-
cast. This is especially true for long-run forecasts. The
superiority of combining forecasts can be attributed
to three features: First, forecast errors are diversi-
fied. Second, combined forecasts do not rely heavily
on the specification of a single VAR model and may
thus be less sensitive to specification errors. And
third, combined VAR forecasts are usually based on
more information than single VAR forecasts.

The present study contains some shortcomings.
To minimise the computational and programming
workload, we restricted ourselves in two respects.
First, we only used five variables. The literature on
the monetary transmission mechanism underlines
the importance of further variables like exchange
rates, import prices, different interest rates, etc.
Second, we did not examine whether the results hold
if different time series properties of the data are
assumed. This would drastically increase the number
of VARFs and CVARFs to be taken into account because
VARs in levels and Error Correction Models would have
to be included. Because an inefficient (and unbiased)
forecast can always be improved by combining it with
another forecast, we would expect some improvement
in forecast accuracy if these two restrictions were

relaxed. The interesting question, however, is
whether this improvement would be as large as the
one shown in this study. Finally, a fundamental limi-
tation of the method presented here must be men-
tioned: Combined VAR forecasts are only suitable
when unconditional forecasts are needed. For struc-
tural simulations (impulse respons, variance decom-
position, conditional forecast) the single VAR
approach has to be used.

To sum up, this paper demonstrates that, in
order to produce unconditional inflation forecasts, it
may be more sensible to work with many “small” VARs
than to use a single VAR model. The empirical results
reveal that this may be especially true for long-run
forecasts of inflation. Reverting to the introductory
quote by Shakespeare, we may draw the following
conclusion: If you cannot say which grain will grow, it
is wise not to choose a single seed but to plant them
all. This paper and the wealth of literature on com-
bined forecasts show that if the purpose is to forecast
rather than to analyse the economy, it is more appro-
priate to use more than just a single model. The SNB’s
inflation forecasts are in fact based on several mod-
els, and the results of this paper help to underpin this
pluralist approach.
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* indicates that the null hypothe-
sis of a unit root is rejected at the
5% significance level. ** and (*)
indicate a rejection at the 1% and
10% significance level. k is the
number of lagged (endogenous)
variables entering the Augmented

Dickey-Fuller test equation. k is
the lag between 0 and 10 with 
the smallest value of the AIC-cri-
terion. r is the estimated unit 
root and t is the test statistic. The
critical values of MacKinnon are
used.

Note: 
For each forecasting horizon, the
best statistic is reported in bold
font. n is the number of variables
entering a VAR. All VARs are of
order 4. For example, for n = 1 the
forecasts are computed with an
AR(4) model. For n = 2 (n = 3) the

forecasts are computed with a
bivariate (trivariate) VAR(4), and
so on. Starting with 30 observa-
tions the sample used for the
estimation of the VARs is aug-
mented until the sample size of
50 is reached. 

1 The number of VARs with n
variables is given in brackets. For
example, “n = 3 (6)” means that
six forecasts were computed with
six trivariate VAR(4). The result
reported in the table is the aver-
age of the six forecasts.

Variable k r t

∆P 5 0.699 –2.699(*)

∆Q 10 0.058 –3.17*

∆M 4 0.570 –2.845(*)

∆C 0 0.833 –2.905*

∆R 0 0.412 –6.736**

Augmented Dickey-Fuller Unit Root Test 1974:1 – 2000:3 Table 1

Number of One-year-ahead forecasts Two-year-ahead forecasts Three-year-ahead forecasts
variables included 1991:1 – 2000:3 1993:1 – 2000:3 1995:1 – 2000:3

in the VAR: 39 forecasts 31 forecasts 23 forecasts

RMSE Theil’s U RMSE Theil’s U RMSE Theil’s U

All VARS (16)1 0.892 0.340 1.259 0.817 1.418 1.302

n = 1 (1) 1.198 0.457 1.365 0.886 1.464 1.345

n = 2 (4) 0.966 0.369 1.252 0.812 1.417 1.301

n = 3 (6) 0.860 0.328 1.242 0.806 1.402 1.287

n = 4 (4) 0.801 0.306 1.245 0.808 1.425 1.309

n = 5 (1) 0.842 0.321 1.340 0.869 1.445 1.328

Individual Out-of-sample VAR Forecasts 
Average results of the 16 VAR forecasts Table 2

Appendix:
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Note: 
n is the number of variables en-
tering the VARs. m is the number
of forecasts combined.  

Number of variables in the VAR (n): Number of combined forecasts (m):

m = 2 m = 3 m = 4 m = 5 m = 6

n = 2 6 4 1 – –

n = 3 15 20 15 6 1

n = 4 6 4 1 – –

Subgroups of Combined VAR-Forecasts Table 4

Note: 
VAR(4) and combinations are
estimated with 50 observations.

One-year forecast horizon Two-year forecast horizon Three-year forecast horizon
1991:1 – 2000:3 1993:1 – 2000:3 1995:1 – 2000:3

39 forecasts 31 forecasts 23 forecasts

Method RMSE U % RMSE U % RMSE U %

VARF 0.892 0.340 100% 1.259 0.817 100% 1.418 1.302 100%

SA 0.749 0.286 –15.9% 1.167 0.757 –7.3% 1.374 1.262 –3.1%

LS 1.069 0.408 20% 1.714 1.112 36.1% 2.528 2.322 78.3%

CRLS 0.942 0.360 5.9% 1.142 0.741 –9.3% 1.261 1.158 –11.1%

ERLS 0.868 0.331 –2.6% 1.302 0.844 3.3% 1.552 1.426 9.5%

NRLS 0.904 0.345 1.5% 1.088 0.706 –13.6% 1.268 1.165 –10.5%

Combined Out-of-sample VAR Forecasts 
Average result for the 79 combined forecasts Table 3
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One-year-ahead forecasts Two-year-ahead forecasts Three-year-ahead forecasts
1991:1 – 2000:3 (39 forecasts) 1993:1 – 2000:3 (31 forecasts) 1995:1 – 2000:3 (23 forecasts)

SA CRLS CRLS

RMSE U GAIN RMSE U GAIN RMSE U GAIN

VARF 0.892 0.340 100% 1.259 0.817 100% 1.418 1.302 100%

CVARF 0.749 0.286 –15.9% 1.142 0.741 –9.3% 1.261 1.158 –11.1%

Subgroups formed by the number of VAR-forecasts combined

m = 2 (27) 0.782 0.298 –12.4% 1.208 0.784 –4.0% 1.327 1.219 –6.4%

m = 3 (28) 0.745 0.284 –16.5% 1.179 0.765 –6.4% 1.264 1.161 –10.8%

m = 4 (17) 0.721 0.275 –19.1% 1.080 0.701 –14.2% 1.201 1.104 –15.2%

m = 5 (6) 0.705 0.269 –20.9% 0.914 0.593 –27.4% 1.147 1.054 –19.0%

m = 6 (1) 0.698 0.266 –21.8% 0.783 0.508 –37.9% 1.100 1.011 –22.4%

Subgroups formed by the number of variables entering the VARs 

n = 2 (11) 0.869 0.332 –2.4% 1.389 0.901 –10.3% 1.285 1.181 –9.3%

n = 3 (57) 0.734 0.280 –17.6% 1.073 0.696 –14.9% 1.258 1.156 –11.2%

n = 4 (11) 0.706 0.270 –20.6% 1.256 0.815 –0.2% 1.251 1.149 –11.8%

Combined Out-of-sample VAR Forecasts (Subgroups)
Average result for different subgroups of the 79 combined forecasts Table 5

Note: 
m is the number of forecasts
combined.

Note: 
n is the number of variables
entering the VARs.
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Rank VAR RMSE Theil's U

One-year-ahead forecasts: 1991:1 – 2000:3 (39 forecasts)

1 P, M, C, R 0.716 0.273

2 P, M, C, Q 0.732 0.280

3 P, C, R 0.742 0.283

Two-year-ahead forecasts: 1993:1 – 2000:3 (31 forecasts)

1 P, M, C, Q 1.088 0.706

2 P, M, C 1.128 0.732

3 P, M, Q 1.152 0.748

Three-year-ahead forecasts: 1995:1 – 2000:3 (23 forecasts)

1 P, C, R 1.318 1.210

2 P, C, Q, R 1.351 1.241

3 P, C 1.358 1.247

The Best Individual VAR Forecasts Table 6

Note: 
VAR(4) and combinations are
estimated with 50 observations.

Rank CVARF RMSE Theil’s U Gain

One-year-ahead forecasts (SA)

Best VARF 0.716 0.273 100%

1 P,M,C + P,Q,R 0.650 0.248 –9.2%

2 P,M,C + P,C,R + P,Q,R 0.658 0.251 –8.1%

3 P,M,C,Q + P,M,C,R + P,M,Q,R 0.662 0.252 –7.7%

Two-year-ahead forecasts (CRLS)

Best VARF 1.088 0.817 100%

1 P,M,C + P,M,Q + P,M,R + P,C,Q + P,C,R + P,Q,R 0.783 0.508 –38.8%

2 P,M,C + P,M,R + P,C,Q + P,C,R + P,Q,R 0.787 0.511 –37.5%

3 P,M,C + P,M,R +P,C,R + P,Q,R 0.817 0.530 –35.1%

Three-year-ahead forecasts (CRLS)

Best VARF 1.318 1.210 100%

1 P,M,C + P,C,R + P,Q,R 0.921 0.846 –30.1%

2 P,M,C + P,C,R + P,Q,R + P,M,R 0.951 0.874 –27.8%

3 P,M,C + P,C,R + P,Q,R + P,M,Q 0.952 0.874 –27.8%

The Best Combined VAR Forecasts Table 7

Note: 
VAR(4) and combinations are
estimated with 50 observations.


