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Abstract

Two Bayesian sampling schemes are outlined to estimate a K-state Markov switch-
ing model with time-varying transition probabilities. The multinomial logit model
for the transition probabilities is alternatively expressed as a random utility model
and as a difference random utility model. The estimation uses data augmentation
and both sampling schemes can be based on Gibbs sampling. Based on the model
estimate, we are able to discriminate the model against a smooth transition model,
in which the state probability may be influenced by a variable, but without de-
pending on the past prevailing state. Formulating a definition allows to determine
the relevant threshold level of the covariate influencing the transition distribution
without resorting to the usual grid search. Identification issues are addressed with
random permutation sampling. In terms of efficiency the extension to difference
random utility in combination with random permutation sampling performs best.
To illustrate the method, we estimate a two-pillar Phillips curve for the euro area,
in which the inflation rate depends on the low-frequency components of M3 growth,
real GDP growth and the change in the government bond yield, and on the high-
frequency component of the output gap. Using recent data series, the effect of the
low-frequency component of M3 growth depends on regimes determined by lagged
credit growth.
JEL classification: C11,C22,E31,E52
Key words: Bayesian analysis, credit, M3 growth, Markov switching, Phillips curve,
permutation sampling, threshold level, time-varying probabilities.

1 Introduction

Bayesian estimation of Markov regime switching models is by now well developed in the
literature (Chib 1996, Frühwirth-Schnatter 2006, Sims et al. 2008) and many applications
have proved the model to be useful in the analysis of economic data. Among many others,
see the multivariate approaches of Kim and Nelson (1998), Paap and van Dijk (2003),
Hamilton and Owyang (2009), Kaufmann (2010). Generally, the transition probabilities
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†The paper contains the views of the author and not necessarily those of the SNB.

Thanks for comments go to an anonymous referee. The author assumes the responsibility for errors or
omissions.
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are assumed to be exogenous, which represents a major critique addressed to Markov
switching models (and to models with exogenous break dates in general), as they lack an
explicit interpretation of the driving variables behind the switching process. Extensions to
time-varying probabilities have usually focussed on the restriction to two states and have
been parameterized using a probit specification (see Filardo 1994, Filardo and Gordon
1998). A multinomial logit specification is adopted in Meligkotsidou and Dellaportas
(2011) who use recent derivations of auxiliary samplers for multinomial logistic models
(Holmes and Held 2006) to estimate hidden Markov models.

In the present paper, time-varying probabilities are also parameterized using a multi-
nomial logit function which provides a mean to extend Bayesian estimation to a K-state
switching model in a straightforward way. Two Markov chain Monte Carlo (MCMC)
samplers are proposed to estimate the model, both of which are based on data augmen-
tation. The first one uses the extension of the multinomial logit model to the random
utility representation and the second one the extension to the difference in random utility
representation (Frühwirth-Schnatter and Frühwirth 2010). The advantage of introduc-
ing the additional layers is that draws from the posterior distribution of all parameters,
including those driving the time-varying transition probabilities, are obtained from full
conditional posterior distributions. Hence, we can rely on the Gibbs sampler while the
alternative sampler of Holmes and Held (2006) involves rejection sampling in the random
utility representation of the logit regression model. While parameter inference with both
auxiliary samplers is straightforward and easy, it turns out that the extension to the dif-
ference in random utility representation is more efficient than the extension to the random
utility model. Finally, note that although the samplers are presented within a univariate
framework here, the schemes can be readily integrated in multivariate time series or panel
data approaches like those mentioned before.

The posterior inference of the model allows to discriminate the Markov switching
model against nested alternatives. A Markov switching model with constant, exogenous
transition distribution is obtained if the parameters on the covariate are restricted to
zero. If the parameters governing the transition distribution do not depend on the previ-
ous state, we obtain a smooth transition model (STAR, Teräsvirta and Anderson 1992).
The latter models usually include a threshold to be estimated. Using a so-called centered
parametrization which leaves the threshold inherently unidentified allows to estimate the
time-varying influence of the covariate irrespectively of the threshold. Nevertheless, we
show that a threshold different from the mean of the covariate can be recovered by exploit-
ing the role that the covariates play in the time-varying transition distribution. In short,
after model estimation, the threshold level is defined as the level at which the divergence
between the persistence probabilities of states is minimized.

Another issue that is also addressed is identification, which is important to obtain
an unbiased estimate of the identified model, (Hamilton et al. 2007). Regime switching
models are not identified unless an ordering of the states is provided. Finding a uniquely
state-identifying restriction is often driven by the investigation at hand. Nevertheless,
there often are cases, in particular in models including an increasing number of param-
eters to estimate, where it is unclear a priori which coefficient may be used to uniquely
identify the states. The issue is addressed by using the random permutation sampler
(Frühwirth-Schnatter 2001) to first obtain an estimate of the unconstrained posterior dis-
tribution, which also yields an inference about the presence of Markov switching. Then
the sample from the unconstrained posterior is postprocessed to infer a uniquely state-
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identifying restriction. Meligkotsidou and Dellaportas (2011) argue that identification is
not an issue if the purpose of investigation is forecasting. Nevertheless, one might be in-
terested in obtaining state-dependent forecasts, if e.g. the states would represent different
macroeconomic scenarios, each of which would imply a state-specific policy response. In
that case, model identification would again be a prerequisite.

Additional literature most directly related to the present paper includes Hamilton
and Owyang (2009), who estimate US state-level recession clusters. They model cluster
association of US state-level employment growth rates using a multinomial logit specifi-
cation with four covariates. There is no path-dependence in cluster association, however.
Another approach to model endogenous transition probabilities is presented in Billio and
Casarin (2009), who specify the moments of the Beta distribution governing a two-state
switching process to depend on covariates like duration or past transition probabilities.
Change-point models (Chib 1998) with a fixed number of regimes are nested in Markov
switching models. Setting the appropriate zero restrictions in the transition matrix yields
a process with switches to non-recurrent states. While Chib (1998) and Pesaran et al.
(2007) assume constant transition probabilities, Koop and Potter (2007) render the ap-
proach more flexible by introducing a hierarchical prior for state duration which induces
duration dependent transition probabilities. Moreover, the setup they pursue does not
restrict the number of breaks to a predetermined value. Most recently, Geweke and Jiang
(2011) present a multiple-break model in which the unknown number of break dates are
indicated by a latent Bernoulli variable, with exogenous probability distribution, however.
A logit specification of the break probability including explanatory covariates, as pursued
in the present paper, could also be integrated in their approach.

We apply the model to the two-pillar Phillips curve for the euro area investigated
in Assenmacher-Wesche and Gerlach (2008). They regress the quarterly inflation rate
on the low-frequency components of M3 growth, real GDP growth and the change in
the government bond yield, and on the high-frequency component of the output gap.
They find that the coefficient on the low-frequency components of M3 growth and real
GDP growth are not significantly different from 1 and -1, respectively. The low-frequency
component of the change in the government bond yield looses its significance when the
frequency band is shifted towards longer frequencies. The high-frequency component
of the output gap remains significant in all frequency bands considered. This analysis
confirmed the importance of M3 growth as an indicator for inflation prospects. It turns
out that these results are not reproducible if the empirical Phillips curve is estimated for
shorter and more recent data series running from 1983 to 2010. Extending the setup to
a Markov switching framework recovers a state-specific long-run unity coefficient for M3
growth. Lagged credit growth rate above a threshold level of 2% quarterly growth rate is
estimated to be indicative of switches to the state in which M3 growth is significant for
inflation.

The next section outlines the econometric model and discusses the parametrization
of the transition distribution. Section 3 presents the MCMC sampling scheme. The
interested reader finds the detailed derivations of the posterior distributions in appendices
A and B. In section 4 the estimation method is illustrated with simulated data and
contains the efficiency evaluation of the RUM and dRUM auxiliary samplers, each of
which is implemented within the random and alternatively the constrained permutation
sampler. The application to the two-pillar Phillips curve for the euro area is presented in
section 5. Section 6 concludes.
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2 The econometric model

2.1 Specification

The usual representation of a regime-switching model for a time series yt is

yt = X ′
tβSt + εt (1)

εt ∼ i.i.d N(0, σ2) (2)

where Xt is a p×1 vector of explanatory variables which may include lagged observations
of yt if autoregressive dynamics are taken into account. The parameter vector β is state-
dependent, βSt = βk if St = k, k = 1, . . . , K. In the general case, the variance of the
error terms may also be subject to regime changes, σ2

St
= σ2

k if St = k. The variance
may even be driven by a state variable that is independent of the state variable governing
the parameter vector β. For expositional convenience, we drop this assumption. The
estimation of the model extended to state-dependent variances is straightforward. For
completeness, we will discuss it in section 3, which outlines the sampling scheme.

The state indicator St = k, k = 1, . . . K follows a first-order Markov process. A usual
critique to Markov switching models with exogenous transition probabilities, in particular
in macroeconomic applications, is the lack of an explicit inclusion/interpretation of the
driving variable(s) behind the switching process. The usual procedure is then to correlate
the estimated state probabilities to business cycle measures or to variables expected to
influence the regimes. One can also compute moments of the variables like the state-
dependent means and/or variances to characterize the estimated regimes. Another avenue
has been to set up a model for the transition probabilities and to include explicitly the
variables expected to influence them, which yields a model with time-varying transition
probabilities. A covariate Z̃t affecting the transition distribution of the state variable
then, through βSt , indirectly influences the effect of a variable in Xt.

In the present paper, we will parameterize the time-varying transition probabilities in
what we call a centered way:

P (St = k|St−1 = l, Zt, γ) = ξlk,t =
exp (Ztγ

z
lk + γlk)∑K

j=1 exp
(
Ztγz

lj + γlj
) , k = 1, . . . , K, (3)

where the influence of the covariate is decomposed into two components. Namely, the

time-varying component
(
Z̃t − Z̄

)
γz
lk, capturing the effect of deviations from the mean

in the first term and the mean effect Z̄γz
lk entering the second term γlk = γ̃lk + Z̄γz

lk,
which ultimately affects the time-invariant average state persistence.1 The prior on γlk
can then be specified taking into account all time-invariant parts simultaneously, those
coming from the truly exogenous part and those coming from mean effects of covariates.

For identification purposes, the parameters governing the transition to the “reference”
state k0, k0 ∈ K = {1, . . . , K}, are assumed to be zero,

(
γz
lk0
, γlk0

)
= 0. This yields

P (St = k0|St−1 = l, Zt) =
1

1 +
∑

j∈K−k0

exp
(
Ztγz

lj + γlj
) (4)

1The model can be generalized to include more than one covariate to influence the transition proba-
bilities. In that case Zt and γz

lk would be m× 1 vectors of variables and of parameters, respectively. The
product in the numerator and denominator would then read Z ′

tγ
z
lk.
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where K = {1, . . . , K} is the set of all states and K−k0 means all states but the reference
transition to state k0.

The reasons why we explicitly use the centered parametrization (3) are twofold. First,
it defines the average Z̄ as an (initial arbitrary) threshold level. This is not restrictive, as
we show below how the posterior estimate of the model can be used to define a threshold
level which would differ from the average. Second, in the uncentered specification

ξlk,t =
exp

(
Z̃tγ

z
lk + γ̃lk

)
∑K

j=1 exp
(
Z̃tγz

lj + γ̃lj

) =
exp

(
Z̃tγ

z
lk +

(
γlk − Z̄γz

lk

))
∑K

j=1 exp
(
Z̃tγz

lj + γ̃lj

) (5)

the time-invariant part of the transition probabilities γ̃lk would reflect the time-invariant
part net of the mean effect of Z̃t. Formulating a prior on γ̃lk is then not scale invariant with
respect to Z̃t. In fact, only diffuse priors might be appropriate in this parametrization
given that γ̃lk might be a large negative or positive number, depending on the sign of Z̃t

(think of survey indices which may take on only positive values). As already mentioned,
using the centered specification, we circumvent the problem in that we formulate a prior
simultaneously on all time-invariant parts of the transition probabilities.

Although we do not put any restrictions on γz
lk, after estimation they should reflect

a property that we may think of as being reasonable in a Markov switching process
(see also the examples in subsection 2.3). When deviating from zero (or another non-
trivial threshold), the covariate Zt should increase the dispersion in the persistence of
the states, by e.g. increasing the switching probability from state 1 to state 2 (decreasing
the persistence of state 1) and increasing the persistence of state 2. Thus, when K = 2,
parameters considerably shifted away from zero should be so in the same direction. When
K > 2, this property should at least be present between parameters relating to two (past)
states.

Finally, the parametrization is quite general and nests some interesting alternatives,
which are discussed in the following subsection.

2.2 Nested alternatives and a digression: Defining a threshold

In the literature implementing time-varying transition probabilities (Filardo 1994, Amisano
and Fagan (2010)) it is sometimes assumed that the effect of the covariate is indepen-
dent of the past state, which would restrict γz

lk = γz
k . The Markov dependence is then

only governed by the time-invariant part γlk. If the effect of the covariate is irrelevant,
γz
lk = 0, ∀l, k, we obtain a K-state Markov switching model with constant transition

probabilities.
If on the other hand γz

lk = γz
k and γlk = γk, ∀k, the time-varying state probabilities

are independent of the lagged prevailing state. The regime probability is then a monotone
function of Zt only:

P (St = k|Zt, γ) = ξkt =
exp (Ztγ

z
k + γk)∑K

j=1 exp
(
Ztγz

j + γj
)

and we obtain a multi-state analogue to the logistic smooth transition model of Teräsvirta



6

and Anderson (1992):

yt = (1− ξt) β1Xt + ξtβ2Xt + εt (6)

= β1Xt + ξt (β2 − β1)Xt + εt (7)

ξt =
1

1 + exp (γz (Zt − c))

where γz represents the curvature and c the threshold. The parametrization we adopt
inherently leaves the threshold unidentified, given that any level (also different from the
mean) may be recovered from a posterior estimate of (3):

Ztγ
z
jk + γjk = (Zt − c)γz

jk + γ̃jk

where γjk = −cγz
jk + γ̃jk.

We may nevertheless define a relevant threshold level:
Definition 1: The relevant threshold level is the level of Z̃t at which the divergence between
the persistence probabilities of states is minimized.

According to this definition, in case K = 2, in the Markov switching model the level
of Z̃t would be the level at which the persistence probabilities of states is equalized,
ξ11,t = ξ22,t.

2 Using the centered specification (3), the threshold level is composed of two
components: the average level Z̄ and the level c, which can be determined after model
estimation using Definition 1 applied to Zt instead of Z̃t. The obvious advantage of the
procedure is that the inference about the threshold level is done without having to resort
to a grid search, which represents the common approach in estimating transition models.

To sum up, having obtained an inference on the posterior distribution of the parame-
ters governing the transition probabilities in (3), we may assess whether the model could
be restricted to one of the discussed alternative parametrization, the smooth transition
model or the constant transition Markov model.

2.3 Some examples

To illustrate the various effects of the covariate on the transition distribution, let us
assume three scenarios for Zt, Zt = {0, 0.3,−0.3}. Assume two states for St, St ∈ {1, 2}
and state 1 to be the reference transition state. The model (3) can be written as

ξk2,t =
exp (Z′tγ2)

1 + exp (Z′tγ2)
(8)

where Zt =
(
ZtD

(1)
t−1, ZtD

(2)
t−1, D

(1)
t−1, D

(2)
t−1
)′
, with D

(j)
t = 1 if St = j and 0 otherwise, j =

1, 2. The parameter γ2 has four elements, γ2 = (γz
12, γ

z
22, γ12, γ22). The first two elements

determine the time-varying effect of the covariate on the transition probability to state 2,
which depends on the state prevailing in period t−1. The last two elements, (γ12, γ22), are
the parameters governing the time-invariant transition probability from state 1 in period
t−1 to state 2 in period t and to the persistence of remaining in state 2, respectively. Four

2For the smooth transition model, the analogously defined threshold level is the level of Z̃t at which
the absolute difference between the state probabilities is minimized, i.e. the level of Z̃t at which the state
probability is equal to 0.5, ξt = 0.5.
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different settings for γ2 are assumed. In the first three, γ2 = (4, g,−2, 2), g = 0, 1, 4, which
yields an average persistence of 0.88 for each state. The influence of the combinations of
the various settings on ξt is depicted in table 1. In the first row where γ2 = (4, 0,−2, 2),
we observe that Zt influences only the transition distribution of state 1. When Zt is
positive, the probability to switch to state 2 increases from 0.12 to 0.31. Conversely, as
soon as Zt would decrease, the persistence of state 1 would increase. In the second row
where γ2 = (4, 1,−2, 2), we observe that now an increase (a decrease) in Zt also increases
(decreases) the persistence of state 2. The two settings thus illustrate the property that
the dispersion between state persistence is positively related to deviations of the covariate
from its mean (or threshold). In the third row (γ2 = (4, 4,−2, 2)) the effect of Zt is
independent of the past prevailing state and the transition probabilities are a monotone
function of Zt only. The changes in the persistence probabilities are then symmetric for
deviations of Zt from zero. The second last row contains the effects when γ2 = (4, 4, 2, 2),
which represents the setting where the state probabilities are a monotone function of
Zt only, without dependence on the past prevailing state. For completeness, we add a
parameter setting, in which the effect of Zt goes into opposite directions for the state
transition distributions. We observe that this case would capture situations in which
positive (negative) deviations of the covariate from its mean would render an economic
system more labile (inert), reflected in a decrease (an increase) in both state persistence
probabilities.

From these examples, we would argue that in macroeconomic investigations the first
three settings would be the most expected ones for Markov sitching models with signifi-
cantly time-varying transition probabilities. A relevant covariate, in our view, would shift
the mass of all (or most) transition distributions towards the same state.

Figure 1 ill ustrates the nonlinear effect of the covariate on the persistence probabilities
of the states for the second, second last and last parameter settings of table 1, respectively.
Panel (a) depicts the effect on the state persistence probabilities in the case we think is
the most expected one in macroeconomic analysis. Panel (a) and (c) illustrate that in all
settings of table 1 except for the second last one, the relevant threshold level according to
our definition would be zero. At that level, the persistence probabilities are equal. They
diverge, as Zt deviates from zero. In the second last setting, and in fact also in the last
one for equal parameters of opposite sign in γz (in which case the lines in panel (c) would
overlap), given our definition the parameters would imply a threshold level of respectively
Zt = −0.5 and Zt = 0.5, yielding a state probability of 0.5, ξt = 0.5.

3 MCMC Estimation

3.1 The likelihood and prior specification

To outline the estimation of model (1), we introduce the following notation. With the
time subscript t we indicate observations as of period t, while with the time superscript
we indicate the entire history of observations up to time t, i.e. yt = (yt, yt−1, . . . , y1),
and similarly for X t, Zt, St. The regression parameters are gathered into the parameter
vector β = (β1, . . . , βK), where βk = (β1,k, . . . , βp,k), for k = 1, . . . , K. Finally, the
parameters governing the transition probabilities are denoted by γ = {γj|j ∈ K−k0} with
γj = (γz

1j, . . . , γ
z
Kj, γ1j, . . . , γK,j). All model parameters are contained in θ = (β, γ, σ2),
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Table 1: Time varying transition probabilities. Some examples for ξt = P (St|St−1, Zt, γ),
γ = (γz

12, γ
z
22, γ12, γ22)

γ = Zt = 0 Zt = 0.3 Zt = −0.3

(4,0,-2,2)

[
0.88 0.12
0.12 0.88

] [
0.69 0.31
0.12 0.88

] [
0.96 0.04
0.12 0.88

]

(4,1,-2,2)

[
0.88 0.12
0.12 0.88

] [
0.69 0.31
0.09 0.91

] [
0.96 0.04
0.15 0.85

]

(4,4,-2,2)

[
0.88 0.12
0.12 0.88

] [
0.69 0.31
0.04 0.96

] [
0.96 0.04
0.31 0.69

]

(4,4,2,2)

[
0.12 0.88
0.12 0.88

] [
0.04 0.96
0.04 0.96

] [
0.31 0.69
0.31 0.69

]

(4,-2,-2,2)

[
0.88 0.12
0.12 0.88

] [
0.69 0.31
0.20 0.80

] [
0.96 0.04
0.07 0.93

]
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and the extended parameter vector ψ = (θ, ST ) gathers the model parameters and the
unobservable state vector ST .

Conditional on the state vector ST , the complete data likelihood of the regression
model (1) is

L
(
yT |XT , ST , θ

)
=

T∏
t=1

f (yt|Xt, St, θ) (9)

with a normally distributed observation density

f (yt|Xt, St, θ) =
1√
2πσ

exp

{
− 1

2σ2
(yt −X ′

tβSt)
2

}
(10)

Conditional on γ and Zt, the prior density of the state vector factorizes

π
(
ST |ZT , γ

)
=

T∏
t=1

π (St|Zt, St−1, γ) π (S0) (11)

To complete the setup, the prior distribution of the regression parameters, the error
variance and of the parameters governing the transition distribution are assumed to be
independent

π (θ) = π(β)π(σ2)π(γ) (12)

Conditional on the state, we face a traditional piecewise linear regression model and
therefore, we may specify the usual normal-inverse Gamma prior distributions for β and
σ2, respectively:3

π (β) =
K∏
k=1

π (βk) =
K∏
k=1

N (b0, B0) (13)

π
(
σ2
)

= IG (w0,W0) (14)

The prior specification in (13) additionally assumes the state-dependent regression param-
eters to be independent of each other, and to follow a state-independent prior distribution.
The specification can be generalized to include state-dependent prior hyperparameters,
π (βk) = N (b0k, B0k). The logit specification for the transition probabilities in (3)-(4)
allows to assume a normal prior distribution for the parameter γ:

π (γ) =
∏

k∈K−k0

π (γk) =
∏

k∈K−k0

N (g0k, G0k) (15)

3.2 The sampling scheme

The posterior distribution π
(
ψ|yT , XT , ZT

)
is obtained by combining the prior with the

likelihood
π
(
ψ|yT , XT , ZT

) ∝ f
(
yT |XT , ST , θ

)
π
(
ST |ZT , γ

)
π (θ) (16)

3In case of state-specific error variances we would specify the prior π
(
σ2
1 , . . . , σ

2
K

)
=∏K

k=1 IG (w0k,W0k).
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To obtain a sample from (16), we iterate over the following Markov chain Monte Carlo
sampling steps:
(i) Sample the state indicator from π

(
ST |yT , XT , ZT , θ

)
by multi-move sampling

(ii) Sample the parameters governing the transition probabilities from π(γ|ST , ZT )
based on data augmentation (Frühwirth-Schnatter and Frühwirth 2010), taking
into account the path-dependent structure in the present logit model.
Compute ξt, the matrices of time-varying transition probabilities which determine
the posterior in (i)

(iii) Sample the remaining parameters p(θ−γ|ST , yT , XT )
(iv) Permutation step: Either randomly permute all state-dependent parameters

to obtain a sample from the unconditional distribution, or permute the state-
dependent parameters according to a uniquely state-identifying restriction.

Step (i) is by now standard in Bayesian MCMC methods. The way we proceed is to
adjust the multi-move sampler described in Chib (1996) to the time-varying specification
of the transition probabilities. The interested reader finds the derivation of the posterior
sampling densities in appendix A.

Step (ii) is based on data augmentation procedures proposed in Frühwirth-Schnatter
and Frühwirth (2010), the advantage of which are that, by conditioning on two auxiliary
latent variables, namely the utilities (or the utility differences) and the mixture component
indicators, the full conditional posterior distribution of γ can be derived and drawn from
in a Gibbs step. In a first step, extending the model to the random utility model (RUM,
McFadden 1974) yields a non-normal model for so-called state-dependent latent utilities,

Su
kt = Z′tγk + νkt, ∀k ∈ K−k0 (17)

Su
k0,t

= νk0,t, for the identification restriction γk0 = 0, (18)

where Zt =
(
ZtD

(1)
t−1, ZtD

(2)
t−1, . . . , ZtD

(K)
t−1 , D

(1)
t−1, D

(2)
t−1, . . . , D

(K)
t−1
)′
. If νkt, k = 1, . . . , K,

follow a Type I extreme value distribution, the marginal distribution of St will be the
multinomial logit model as in (3)-(4). Conditional on Su

kt, ∀k, t, we could sample γ
from the posterior distribution applying a Metropolis-Hastings algorithm and using a
multivariate normal proposal (Scott 2006). Frühwirth-Schnatter and Frühwirth (2007)
introduce an additional layer to approximate the density of νkt by a mixture of M normal
components (see Frühwirth-Schnatter and Frühwirth 2007, table 1). Conditional on the
components Rkt and the utilities Su

kt, the non-normal model becomes conditionally linear

Su
kt = Z′tγk +mRkt

+ sRkt
υkt, υkt ∼ N(0, 1). (19)

Assuming a normal prior for γk, the conditional posterior is also normal γk ∼ N (gk, Gk),
with

Gk =

(
T∑
t=1

ZtZ
′
t/s

2
Rkt

+G−10k

)−1
(20)

gk = Gk

(
T∑
t=1

Zt (S
u
kt −mRkt

) /s2Rkt
+G−10k g0k

)
(21)

A second approach uses the extension to a difference random utility model (dRUM),
i.e. expresses the differences in the latent utilities

skt = Z′tγk + εkt, εkt ∼ Logistic, ∀k ∈ K−k0 (22)
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where skt = Su
kt − Su

k0,t
and εkt = νkt − νk0,t. Given that the parameters of the reference

transition are zero, γk0 = 0, γk is the same as in (17). The model can further be condensed
to obtain the partial dRUM representation:

ωkt = Su
kt − Su

−k,t, D
(k)
t = I{ωkt > 0} (23)

= Z′tγk − log (λ−k,t) + νkt − ν−k,t︸ ︷︷ ︸
=εkt

(24)

where Su
−k,t indicates the maximum value of all utilities excluding Su

k,t, S
u
−k,t = maxj∈K−k

Su
jt,

and the constant λ−k,t =
∑

j∈K−k
exp (Z′tγj). Given that the constant − log (λ−k,t) is in-

dependent of the coefficient γk, we obtain a linear regression γk with logistic errors. The
logistic error distribution can again be approximated by a mixture of mean zero normal
distributions with M components, and conditional on the component Rkt, the non-normal
model becomes normal (see Frühwirth-Schnatter and Frühwirth 2010, table 1):

ω̃kt = ωkt + log (λ−k,t) = Z′tγk + εkt, εkt|Rkt ∼ N
(
0, s2Rkt

)
(25)

Again, assuming a normal prior for γk, the posterior is normal γk ∼ N (gk, Gk), with

Gk =

(
T∑
t=1

ZtZ
′
t/s

2
Rkt

+G−10k

)−1
(26)

gk = Gk

(
T∑
t=1

Ztω̃kt/s
2
Rkt

+G−10k g0k

)
(27)

The interested reader finds a detailed derivation of the sampling scheme in appendix
B.

In step (iii), we further block the parameter vector into the regression vectors β =
vec(β1, . . . , βK) and σ2. Conditional on data and ST , the posterior of β is normal,

π (β) ∼ N (b, B)

B =

(
1

σ2
X̃ ′X̃ +B−10

)−1
b = B−1

(
1

σ2
X̃ ′y +B−10 b0

)

where the rows of X̃, X̃t =
(
XtD

(1)
t , XtD

(2)
t , . . . , XtD

(K)
t

)
. The posterior of σ2 is inverse

Gamma, IG (w,W ) with w = w0 +0.5T and W = W0+0.5
∑T

t=1

(
yt − X̃tβ

)2

. In case of

state-dependent variances the posterior would also be inverse Gamma IG (wk,Wk) with

wk = w0 + 0.5Tk, Tk =
∑T

t=1 D
(k)
t and W = W0 + 0.5

∑T
t=1 D

(k)
t (yt −X ′

tβk)
2

To motivate step (iv), note that the model (1) is not identified with respect to the
states. The likelihood (9), L

(
yT |XT , ST , θ

)
and hence the posterior remain unchanged

with respect to any state permutation ρ = (ρ1, . . . , ρK)
4

π
(
θ, ST |yT , XT , ZT

)
= π

(
ρ(θ), ρ(ST )|yT , XT , ZT

)
4For example in caseK = 2, a permutation ρ = (2, 1) would reorder the states and the state-dependent

parameter such that state 2 would become state 1.
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The investigator may choose one of two options. The one most often pursued is to define
a state-identifying restriction based on one of the state-dependent coefficients. In the
present case, one could set a restriction on the regression coefficients or on the parameters
governing the transition distribution:

βj1 < · · · < βjK or γj1 < · · · < γjK (28)

Obviously, in case K > 2, one could also choose a combination of restrictions

βj1 < min (βj2, . . . βjK) and γj2 < · · · < γjK (29)

In this case, each iteration would be terminated by re-ordering the state-dependent pa-
rameters and the states to fulfill the restriction (constrained permutation sampling) and
by re-normalizing the parameters of the transition distribution to k0 = 0. In this case,
the specification of the hyperparameters should not be at odds with the state-identifying
restrictions.

If the investigator does not know a priori which parameter yields a unique state-
identifying restriction, she may sample from the unconditional posterior by forcing the
sampler to visit all posterior modes (random permutation sampling, Frühwirth-Schnatter
2001). State-identification is then obtained by post-processing the MCMC output. At
the end of each sweep, the states and the state-dependent parameters are permuted ran-
domly. The multimodal posteriors can then be used to find a state-identifying restriction,
according to which the sampled values of the states and the state-dependent parame-
ters are re-ordered to obtain the posterior inference on the identified model. A detailed
description of the permutation steps is found in appendix C.

4 Illustration and evaluation

4.1 Model estimation

To illustrate the usefulness of the random sampling procedures outlined in the previous
section, we first use simulated data. We assume an autoregressive process yt to depend
on two exogenous variables

yt = β1Stx1t + β2Stx2t + εt (30)

εt ∼ N
(
0, σ2

St

)
in which the state-dependent regression parameters are set to β1 = {0, 0.8} and β2 =
{0.2, 0.2}, and the state-dependent variances of the error terms to σ2 = {0.05, 0.1}

The Markov switching process St is modelled to depend on one covariate Zt. Assuming
two states K = 2 and k0 = 1, we obtain:

ξk2,t =
exp (Z′tγ2)

1 + exp (Z′tγ2)
(31)

where the parameter γ2 = (4, 1, −2, 2) reflects the property we think of being most
intuitive in macroeconomic applications of Markov switching models. The values (−2, 2)
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correspond, when Z̃t is at its threshold, to a transition probability matrix (see also table
(1))

ξ =

[
0.88 0.12
0.12 0.88

]
The exogenous variables and the covariate are drawn from independent normal distribu-
tions:

x1t, x2t i.i.d. N (0, 1) Z̃t = 0.8Z̃t−1 + ηt, ηt i.i.d. N (0, 0.5) (32)

Zt = Z̃t − 0.5 (33)

where the relative strong autoregressive process for Z̃t is chosen to induce some persistence
in the simulated Markov variable St. The subtraction of 0.5 from Z̃t is introduced to
illustrate the possibility of recovering the threshold level from the model estimate using
Definition 1. We simulate 400 observations, T = 400, and use the last 200 to estimate
the model. Figure 2 plots the simulated state variable along with the covariate in the top
panel and the time series yt in the bottom panel. The influence of the covariate is nicely
observable. If Z̃t is above the threshold of 0.5, the indicator St switches to state 2.

In a first round, we work with Z̃t as covariate, given that its mean is zero. We esti-
mate the model assuming all parameters to be state-dependent under quite uninformative
prior specifications. We specify for βjk π (βjk) ∼ N(0, 1/4), for σk π (σk) ∼ IG(2, 0.25)
and for γ2 π (γ2) ∼ N

(
[4, 0, 0, 0]′ , diag (1, 1, 4, 4)

)
. We iterate 50’000 times over the

sampler outlined in subsection 3.2 and estimate the model using alternatively random
and constrained permutation sampling. The parameters of the transition distribution are
sampled using both alternatives of the auxiliary sampling schemes. In both cases, we
apply random and alternatively constrained permutation sampling.

Before comparing the various estimation methods, we discuss the results of the ul-
timately preferred procedure in terms of efficiency: Random permutation with dRUM
auxiliary sampling of the transition distribution parameters. The simulated values for β1k

(switching parameter) and β2k (not switching parameter) are plotted in figure 3, panel
(a). The sampler converges quickly. Given that the sampler is forced to visit both modes
of the posterior, the simulation paths for β1k and β2k, k = 1, 2, overlap. The scatter
plots in figure 4 plot the simulated regression parameters against the simulated constant
transition parameters γk2 (every 4th of the last 20,000 iterations). These obviously reveal
that β1k is switching between states, while β2k apparently not. The bimodality of state-
dependent parameters is reflected in the marginal posterior densities depicted in figure 5,
panel (a). At first sight, the state-dependency of the error variance is not obvious.

To obtain state-identification, we may re-order the simulated values according to the
state-identifying restriction β11 < β22 and normalize the parameters of the transition
distribution choosing k0 = 1 (see permutation scheme (61) in appendix C). The result of
the identification step is plotted in figure 3, panel (b), for the regression coefficients β1k

and β2k. Obviously, the restriction is able to uniquely identify the two modes. This is
also reflected in the marginal distributions depicted in figure 5, panel (b).

To illustrate the importance of appropriate identification, figure 6 depicts the marginal
posteriors obtained when imposing an inappropriate state-identifying restriction while
sampling, namely β21 < β22. Remember that β2k in (30) is truly not state-dependent.
While the state-specific marginal posteriors of β2k are unimodal, the restriction fails to
invoke unimodality in the posterior of the truly state-dependent parameters, β1k and γz

k2.
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Based on these we would clearly obtain a biased inference on first and second moments
of the marginal posterior distributions of the model parameters.

Figure 7 shows that applying Definition 1 to recover the threshold would yield a median
estimate of 0.48 with an interquartile range of 0.17. The right panel plots Z̃t against ξ

(m)
11,t

and ξ
(m)
22,t implied by the simulated values for γ

(m)
2 . The green points plot the threshold

level Z̃
(m)
t determined according to Definition 1 against the implied persistence probability

of state one ξ
(m)
11,t .

4.2 Efficiency evaluation

The various sampling designs are compared in evaluating their inefficiency in sampling
the parameters of the transition distribution, γ. The inefficiency measure (Geweke 1992)
relates the variance of a hypothetical i.i.d. sampler to the sampling variance. We can
estimate the ratio by dividing the squared numerical standard error (an estimate of the
sampling variance at frequency zero) by the posterior sampling variance of γ, σ̂2

γ. The
square of the numerical standard error is estimated taking into account serial dependence
in the sampled values:

Ŝ(0) = Ω0 + 2
J∑

j=1

(
1− j

J + 1

)
Ωj

where Ωj is the autocovariance for lag j. For the measures summarized in table 2, we
set J = 2000. Moreover, the measures are scaled by the number of retained iterations.
We either retain all of the last 20,000 of a total of 50,000 iterations or retain every 4th
iteration to remove some of the autocorrelation, which leaves us with 5,000 iterations in
that case. For expositional convenience, the inefficiency factors reported in table 2 are
multiplied by 100.

We observe that random permutation with auxiliary sampling based on the dRUM
shows the best performance (last two columns, top two panels). The output of the random
permutation sampler shows virtually the same inefficiency irrespective of whether we use
all iterations or only every 4th one. Working with every 4th iteration in the identified
model, removes considerably autocorrelation in the simulated values (see figure 8), the in-
efficiency is roughly halved. This is not the case for the constrained permutation sampler,
where inefficiency does markedly decrease only for two parameters if we retain only every
4th observation. Auxiliary sampling based on the dRUM strongly outperforms auxiliary
sampling based on the RUM (see also Frühwirth-Schnatter and Frühwirth (2010)). For
nearly every parameter, the inefficiency more than triples, irrespectively of whether we
retain all iterations or retain only every 4th one. The increase in inefficiency is even more
stronger, by a factor of at least 4 to one of 10, when comparing the factors for the iden-
tified models. Finally, constrained permutation with auxiliary sampling based on RUM
leads to the most inefficient sampled MCMC output, the inefficiency factor is not quite
reduced by thinning out the MCMC sample. The inefficiency using the RUM extension is
larger by a factor of at least 6 up to a factor of 40 (for γ22) when compared to the dRUM
extension.

The results about the inefficiency factors are mirrored in the autocorrelation functions
(ACF) of the sampled values for γ. Figure 8 plots the ACFs for the various MCMC out-
puts. The pictures document again the superiority of the random permutation sampler
with dRUM auxiliary sampling. The autocorrelation function drops very quickly to zero
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for all parameters in the randomly permutated MCMC output. Retaining only every 4th
iteration in the identified model also removes considerable autocorrelation in the simu-
lated values. The same applies to constrained permutation sampling. The considerable
inefficiency of RUM auxiliary sampling is revealed in the high and very slowly decreasing
autocorrelation functions. In the case of constrained permutation, the posterior sample
has to be thinned out considerably to remove correlation.

5 Application: The two-pillar Phillips curve

We apply the model to the same setting as in Assenmacher-Wesche and Gerlach (2008),
who estimate an empirical, so-called two-pillar Phillips curve for the euro area:

πt = β0,St + β1,StΔm̃t + β2,StΔR̃t + β3,StΔỹt + β4,St ŷt +

p∑
j=1

φjπt−j + εt (34)

εt ∼ i.i.d N(0, σ2)

where πt represents the quarterly rate of inflation, Δmt, ΔRt and Δy are M3 growth, the
change in the government bond yield, and GDP growth, respectively. The tilde indicates
that the long-run component (extracted by the HP-filter) of the respective variables is
thought to affect the long-run frequency component of the inflation rate, while its high
frequency component is thought to be affected by the cyclical component of the output
gap, indicated by a hat. To take into account dynamics, we also include up to p lagged
values of the inflation rate. As a result of a first investigation, the autocorrelation coef-
ficients and the error variance turned out to be state-independent, therefore we omit a
state-dependent specification in equation (34).

5.1 Data

Most data are retrieved from the statistical website of the European Central Bank. To
obtain longer data series where necessary, we use published data on the euro area wide
model and chain time series backwards by growth rates. Proceeding this way, we obtain
long quarterly data series for real GDP, the harmonized index of consumer prices (HICP),
and the government bond yield. They cover the period from the first quarter of 1970 to the
first quarter of 2010. The historical loan series starts only in 1983. Therefore, the model
estimated with time-varying transition probabilities will use data from 1983 onwards. This
can also be seen as an advantage, as we can assess whether the estimate of the two-pillar
Phillips curve for long time series is robust when only more recent data are available.

To obtain the low- and high-frequency components of time series, we use the HP-filter
rather than extraction by frequency bands. One advantage is that no observations are
lost, in particular at the end of the sample, which may be of interest if the model is
used for forecasting. Moreover, comparing the extracted HP-trend with the component
extracting frequencies longer than 6 years, reveals no large differences between the series.
As an example, see figure 9 in which the low-frequency and the HP-trend of M3 growth
are depicted. The HP-trend shows less volatility, but basically, both time series feature
the same dynamics.
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5.2 Results

We present three estimations of the two-pillar Phillips curve (34). The first estimate will
reproduce the results of Assenmacher-Wesche and Gerlach (2008), in which the coeffi-
cients will not be subject to regime switching. We will thus work with the whole available
observation sample, covering the period 1970-2010. To account for dynamics, we also
include three lagged values of the inflation rate, the fourth being insignificant in a prelim-
inary estimation. In the second estimate the sample is restricted to begin in 1983. Thus,
the results yield evidence about the robustness of the estimates when the investigation
concentrates only on more recent data. Last, we present results for the estimation where
the coefficients are regime switching. We additionally estimate whether the transition
distribution of the regime indicator is endogenous and depends on lagged credit growth.
The model specifying the transition distribution is the one in (3)-(4), where Zt is lagged
credit growth adjusted by its mean of 1.7% quarterly growth rate.

All estimations are based on 75,000 iterations of the MCMC sampler described in
section 3, discarding the first 35,000 and retaining only every 4th for posterior inference.
Based on the efficiency evaluation presented in section 4, we sample out of the uncon-
strained posterior, i.e. the MCMC sample is obtained by applying the random permu-
tation sampler. We base auxiliary sampling of the transition distribution parameters on
the dRUM extension. State identification is then obtained by post-processing the MCMC
output by re-ordering the sampled values according to a state-identifying restriction.

5.2.1 Baseline estimation

The results of the baseline estimation are depicted in the first column of table 3. Basically,
we can reproduce the results of Assenmacher-Wesche and Gerlach (2008), also using HP-
rather than frequency filtered data. In particular, trend M3 growth and the cyclical output
gap are significantly positive. Taking into account the dynamics, the long-run effects of
the variables amount to 0.75 and 0.35 for trend M3 growth and the cyclical output gap,
respectively. A unit long-run effect of trend M3 growth lies in the 95% highest posterior
density interval (HPDI), which corresponds to the estimates presented in Assenmacher-
Wesche and Gerlach (2008). In contrast to Assenmacher-Wesche and Gerlach (2008)
however, we do not find a significant coefficient on trend GDP growth and the estimate
on the trend in the change of the government bond yield is marginally positive (0.48).

When the estimation sample is restricted to begin in 1983, the results basically remain
robust, although the long-run importance of trend M3 growth is estimated to have de-
creased. The 95% HPDI does not include a unit coefficient anymore. The cyclical output
gap remains marginally significant for inflation dynamics. Its effect has also decreased,
however.

5.2.2 Regime switching with time-varying transition distribution

Given that the effect of trend M3 growth on inflation has apparently decreased over time,
it is interesting to assess whether the effect depends on regimes which characterize specific
macroeconomic conditions. We will investigate whether the lagged loan growth rate might
be one determinant of the regime transitions.

In a first round, all variables and the error variance are assumed to be state-dependent.
The output of the random permutation sampler is depicted in figure 10. The coefficients
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on trend M3 growth and on the trend in GDP growth are the most obvious ones to be
state-dependent. The scatter plot for the error variance (not displayed) reveals that this
parameter is not state-dependent, either. Based on this first inference, the final estimate
will restrict the coefficient on the cyclical output gap and the error variances to be state-
independent.5 The states are identified by re-ordering the sampled values according to
β11 < β12 (see the permutation steps in (60)), i.e. state two is the one with a stronger
effect of the long-run component of M3 growth. The marginal posterior distributions of
the state-identified parameters are depicted in the figures 11 and 12). The right-hand plot
in figure 12 shows that lagged credit growth affects the transition distribution of state 1
but not significantly the one of state 2.

The posterior inference on the state-identified parameters is summarized in table 4.
Because there is some overlap in the posterior distributions, we report the 95% and the
90% HPDI in brackets on the first and second line, respectively, below the mean estimate
of the coefficients. Regime 2 now recovers the expected influence of the variables. In
particular trend M3 growth has a strong positive effect on inflation, the short-run 95%
and the long-run HPDI intervals cover the unit coefficient. The negative effects of trend
GDP growth and the trend in the change of the government bond yield are marginally
significant, zero is excluded from the 90% HPDI. In the first regime, mainly real variables
determine inflation. Trend GDP growth and the cyclical output gap (the latter in both
states) have a marginally positive effect on inflation in the short-run and in the long-run
as well.

Figure 13 depicts the posterior probabilities of state 2, P
(
St = 2|yT , XT , ZT

)
. At

the beginning of each episode during which state 2 has been relevant, loan growth was
initially high and inflation was at above-average levels. Moreover, these episodes are
mainly characterized by trend M3 and loan growth moving in parallel. The median
posterior transition probabilities are plotted in figure 14. We observe the effect of lagged
loan growth on the transition distribution of state 1. In particular in 1989 and after
2005, the persistence of state 1 decreases from nearly unity to below 0.8, indicating the
switches to state 2 in figure 13. The horizontal line in figure 13 corresponds to a threshold
level of 2.0% quarterly credit growth rate composed of an average growth rate of 1.7%
and of 0.3% inferred according to Definition 1 of subsection 2.2. The latter corresponds
to the median (across the MCMC output) of the corresponding level of Zt at which the
divergence between the state persistence probabilities is minimized.

6 Conclusion

The present paper proposes to use a multinomial logit model to parameterize a K-state
regime switching process with time-varying transition distribution. To derive a Bayesian
sampling scheme, the multinomial logit model is extended to a random utility and a
difference in random utility model. In a second layer, the non-normal but linear models are
approximated by mixture of normals to derive the full conditional posterior distributions of
the coefficients governing the transition distributions. Identification issues are addressed

5The extension to three states, the results of which are available upon request, revealed that only two
modes characterize the posterior distributions of the regression parameters and that the mean posterior
state probabilities of one of the three states were lower than 0.5 over the whole observation period. This
evidence confirms the two state specification.
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with the random permutation sampler, which, in combination with the model extension
to the difference in utility model, performs best in terms of efficiency.

The model estimate can be used to discriminate the Markov switching specifica-
tion with time-varying transition probabilities against related alternatives, in particular
against a smooth transition model and a Markov model with time-invariant transition
probabilities. We give a definition to determine a relevant threshold of the covariate
influencing the transition distribution. The advantage of the procedure is to obtain an in-
ference on the threshold without resorting to a grid search, the procedure usually pursued
to estimate smooth transition models.

The method is applied to estimate the empirical two-pillar Phillips curve for the euro
area (Assenmacher-Wesche and Gerlach 2008), in which the trend components of M3
growth, real GDP growth and of the government bond yield change, and the cyclical
component of the output gap are the explanatory variables for headline inflation. Using
the nonlinear specification for quarterly data covering the period 1983 to 2010, we are
able to recover first evidence provided for data series going back to the 1970s, which would
not be the case using the original linear specification.

Although the sampling scheme is derived within the univariate framework, it readily
can be included in multivariate approaches like vector autoregressive systems or panel
data analysis.
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A Sampling out of π
(
ST |yT ,XT , ZT , θ

)
To derive the sampling scheme for ST , we define the time-varying matrix ξt with element
ξlk,t, l, k = 1, . . . , K representing the transition probability from state l in t − 1 to state
k in t. For k = 2, . . . , K:

ξlk,t = P (St = k|St−1 = l, Zt, γ) =
exp (Ztγ

z
lk + γlk)

1 +
∑K

k=2 exp (Ztγz
lk + γlk)

where γz
lk and and γlk represent the state-dependent effect of the covariate Zt (here: lagged

credit growth) and the average state-dependent effect, respectively. The transition to state
1 defining the first column of ξt, ξl1,t is the reference transition, and thus is independent
of the covariate:

ξl1,t = P (St = 1|St−1 = l, Zt, γ) =
1

1 +
∑K

k=2 exp (Ztγz
lk + γlk)

We express the posterior π
(
ST |yT , XT , ZT , θ

)
as π

(
ST |yT , XT , ξT , θ−γ

)
and factorize

it

π
(
ST |yT , XT , ξT , θ

)
= π (ST |yT , XT , ξT , θ−γ)

T−1∏
t=1

π (St|yt, Xt, ξt, θ−γ) π (St+1|St, ξt+1)

The filter density π (St|yt, Xt, ξt, θ−γ) is obtained by iterating forward through t = 1, . . . , T

π (St|yt, Xt, ξt, θ−γ) ∝ f (yt|Xt, St, θ−γ) π (St|yt−1, Xt−1, ξt, θ−γ)

π (St|yt−1, Xt−1, ξt, θ−γ) = ξ′tπ (St−1|yt−1, Xt−1, ξt−1, θ−γ)

The prior distribution of the initial state π (S0) is assumed to be uniform over the number
of states: P (S0 = k) = 1/K.

State ST is sampled out of π (ST |yT , XT , ξT , θ−γ). We proceed backwards t = T −
1, . . . , 0 and draw from the posterior sampling density

π (St|yt, Xt, St+1, ξt, θ−γ) ∝ π (St|yt, Xt, ξt, θ−γ) ξStSt+1,t+1

where ξStSt+1,t+1 extracts the column St+1 of the matrix ξt+1.

B Auxiliary mixture sampling of γ

Given that so far regime switching models with time varying probabilities usually have
been parameterized using the probit distribution (Filardo 1994, Filardo and Gordon 1998),
we derive in detail the two sampling schemes for the logit model (3)-(4). Basically, step
(ii) of the sampling scheme outlined in section 3 consists of three sub-steps, which are
described for each model extension in the following sub-sections.
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B.1 Data augmentation for RUM

The three following sampling steps form step (ii) in a sweep of the whole sampling scheme
(see section 3).

(ii.a) Sample the utilities Su
kt from π

(
Su,KT |ST , γ

)
=
∏T

t=1 π
(
Su
1t, . . . , S

u
Kt|ST , γ

)
(ii.b) Sample the components Rkt from π

(
RKT |Su,KT , γ

)
(ii.c) Sample γ from π

(
γ|Su,KT , RKT

)
To sample the utilities

Su
kt = Z′tγk + νkt, ∀k ∈ K−k0 (35)

Su
k0t

= νk0t, from the identification restriction γk0 = 0,

conditional on the state variable ST , we first note that the maximal utility should obtain
for the observed state,

Su
jt = max

k∈K
Su
kt, if St = j

Therefore, exp
(−Su

jt

)
is the minimum value among all values exp (−Su

kt) and

exp
(−Su

jt

) ∼ E
(

K∑
k=1

λkt

)
(36)

where λkt = exp (Z′tγk).
6

Given the minimum, all other utilities are conditionally independent and the posterior
factorizes:

π (Su
1t, . . . , S

u
Kt|St = j, γ) = π

(
Su
jt|St = j, γ

) ∏
k∈K−j

π (Su
kt|St = j, γ) . (37)

The distribution π
(
Su
jt|St = j, γ

)
is given by 36 and implies

exp (−Su
kt) = exp

(−Su
jt

)
+ ξkt, ξkt ∼ E (λkt) , ∀k ∈ K−j (38)

for π (Su
kt|St = j, k �= j, γ). To sample Su

kt for each t = 1, . . . , T , we sample K independent
uniform random numbers Wt and V2t, . . . , VKt and obtain:

Su
kt = − log

(
− log (Wt)∑K

l=1 λlt

− log (Vkt)

λkt

I{St �=k}

)
(39)

Conditional on Su
kt, the component indicator Rkt (step ii.b) is sampled from:

P (Rkt = r|Su
kt, γk) ∝

wr

sr
exp

{
−1

2

(
Su
kt − Z′tγk −mr

sr

)2
}
, k ∈ K−k0 (40)

6The exponential distribution is implied by the Type I extreme value distribution of νkt and from the
fact that the minimum of exponentially distributed variables follows again an exponential distribution:

exp (−Su
kt) ∼ E (λkt) ,

min
k∈K

exp (−Su
kt) ∼ E

(
K∑

k=1

λkt

)
,
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where r = 1, . . . , 10, and the respective component’s mean mr, standard deviation sr and
weight wr, are taken from Frühwirth-Schnatter and Frühwirth (2007), Table 1.

Finally, given all utilities Su,KT and all component indicators RKT , we obtain a linear
regression model for the parameters governing the transition probabilities to each state
k, k ∈ K−k0 :

Su
kt = Z′tγk +mRkt

+ sRkt
υkt, υkt ∼ N(0, 1) (41)

Assuming a normal prior for γk, π (γk) = N(g0k, G0k), conditional on Su,KT and RKT the
posterior is normal, too:

π
(
γk|Su,T

k , RT
k

)
= N (gk, Gk) , ∀k ∈ K−k0 (42)

Gk =

(
T∑
t=1

ZtZ
′
t/s

2
Rkt

+G−10k

)−1
(43)

gk = Gk

(
T∑
t=1

Zt (S
u
kt −mRkt

) /s2Rkt
+G−10k g0k

)
(44)

B.2 Data augmentation for the dRUM

The three sub-steps of step (ii) for the dRUM consist of:
(ii.a) Sample the utility differences ωKT from π

(
ωKT |ST , γ

)
=∏

k∈K−k0
π
(
ωk1, . . . , ωkT |ST , γ

)
(ii.b) Sample the components RKT from π

(
RKT |ωKT , γ

)
(ii.c) Sample γ from π

(
γ|ωKT , RKT

)
The dRUM extension expresses the multinomial logit model as differences in the latent

utilities (35)

skt = Z′tγk + εkt, εkt ∼ Logistic, ∀k ∈ K−k0 (45)

where skt = Su
kt − Su

k0t
and εkt = νkt − νk0t. Given that the parameters of the reference

transition are zero, γk0 = 0, γk is the same as in (35). Working with this representation
would be quite involving because, in contrast to the error terms νkt in (35), the error terms
εkt in (45) are not independent any more across states. Therefore, Frühwirth-Schnatter
and Frühwirth (2010) consider a partial representation of the dRUM model, which relies
on the observation that

St = k ⇔ Su
kt > Su

−k,t, Su
−k,t = max

j∈K−k

Su
jt (46)

i.e. that state k is observed if Su
kt is larger than the maximum of all other utilities. For all

states but the reference state we define the latent difference utilities ωkt and the binary
observation D

(k)
t :

ωkt = Su
kt − Su

−k,t, D
(k)
t = I{ωkt > 0}, ∀k ∈ K−k0 (47)

Given the multinomial logit model for St, ωkt has an explicit distributional form. Recall
that (see footnote 6)

exp
(−Su

−k,t
) ∼ E

⎛
⎝ ∑

j∈K−k

λjt

⎞
⎠ (48)
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where λjt = exp (Z′tγj) and define λ−k,t =
∑

j∈K−k
λjt. We then can write Su

−k,t =

log (λ−k,t) + ν−k,t, where ν−k,t follows an EV distribution. Thus, the multinomial logit
model has the partial dRUM representation

ωkt = Su
kt − Su

−k,t = Z′tγk − log (λ−k,t) + νk,t − ν−k,t

= Z′tγk − log (λ−k,t) + εk,t, D
(k)
t = I{ωkt > 0} (49)

where νk,t and ν−k,t are i.i.d. and follow an EV distribution, and εk,t follows a logistic distri-
bution. The constant − log (λ−k,t) in (49) depends only on the parameters γ−k. Therefore,
given ωT

k = (ωk1, . . . , ωkT ) and γ−k, we obtain a linear regression with parameter γk and
logistic errors.

The sub-sampling steps can now be outlined explicitly. For each state k, we first
sample the latent utility differences ωT

k (step (ii.a)) from logistic distributions.7 Across k,
we sample independently T values Wkt from a uniform distribution Wkt ∼ U [0, 1] and
obtain

ωkt = Z′tγk − log (λ−k,t) + F−1ε

(
D

(k)
t +Wkt

(
1−D

(k)
t − πkt

))
(50)

where πkt = P
(
D

(k)
t = 1|γ

)
= 1 − Fε (−Z′tγk + log (λ−k,t)) ∝ λkt/λ−k,t; Fε (p) represents

the cumulative distribution function of the logistic distribution, and F−1ε (p) = log (p) −
log (1− p) its inverse.

Given ωKT , the posterior of γk is derived based on (49), approximating the logistic
distribution of the errors εkt by a mixture of normal distributions with M components.
The components Rkt (step (ii.b)) are drawn from a multinomial distribution

P (Rkt = r|ωkt, γk) ∝ wr

sr
exp

{
−1

2

(
ωkt + log (λ−k,t)− Z′tγk

sr

)2
}

(51)

where r = 1, . . . , 6, and the respective component’s standard deviation sr and weight wr,
are taken from Frühwirth-Schnatter and Frühwirth (2010), Table 1.

Conditional on the components RT
k , model (49) becomes normal in γk:

ω̃kt = ωkt + log (λ−k,t) = Z′tγk + εkt, εkt|Rkt ∼ N
(
0, s2Rkt

)
(52)

Assuming a normal prior for γk, π (γk) = N(g0k, G0k), conditional on ωT
k and RT

k the
posterior is normal, too:

π
(
γk|ωT

k , R
T
k

)
= N (gk, Gk) (53)

Gk =

(
T∑
t=1

ZtZ
′
t/s

2
Rkt

+G−10k

)−1
(54)

gk = Gk

(
T∑
t=1

Ztω̃kt/s
2
Rkt

+G−10k g0k

)
(55)

7ωkt|ST , γk follows a logistic distribution truncated to [0, ∞) if St = k, and truncated to (−∞, 0] if
St �= k.



25

C Model identification

A more detailed description of the permutation step (iv) in the sampling scheme outlined
in section 3.2 is given here, given that the multinomial logit specification of the transition
probabilities has a path-dependent structure, i.e. depends not only on the current state
but also on the past state. Recall that the model (1)-(3) needs a restriction to identify
the states. Given that the likelihood is invariant for a given state permutation ρ =
(ρ1, . . . , ρK), the same holds for the posterior:

π
(
θ, ST |yT , XT , ZT

)
= π

(
ρ(θ), ρ(ST )|yT , XT , ZT

)
(56)

Thus the unconstrained posterior has K! modes. Usually, the model is estimated by as-
suming a state-identifying restriction. In the sampling scheme outlined in section 3.2, this
would amount to complete each iteration by re-ordering the state-dependent parameters
and the states according to a restriction, e.g.

βj1 < · · · < βjK or γj1 < · · · < γjK (57)

for any j indicating a state-dependent parameter or one of the state-dependent parameter
governing the transition distribution. This would be termed constrained permutation
sampling. In this case, the specification of the hyperparameters should not be at odds
with the state-identifying restrictions.

Another approach would be to sample from the unconstrained posterior, i.e. to force
the sampler to visit all modes of the posterior (16) by randomly permuting the states and
the state-dependent parameters at the end of each iteration (random permutation sam-
pling). A state-identifying restriction may then be found by post-processing the MCMC
output. For instance, looking at the marginal posterior distributions or scatter plots of
state-dependent parameters may reveal adequate uniquely state-identifying restrictions.
This procedure is useful, if the researcher has no information on which parameter(s) are
significantly different across regimes or on whether there is regime-switching at all (see
application sections below).

In any case, the permutation of the state-dependent parameters in the multinomial
logit specification (3) needs special attention. It is best introduced by considering the
example given in section 2.3. Assuming two states, St ∈ {1, 2} and a scalar covariate
determining the transition distribution, the transition probabilities are written as

ξlk,t =
exp (Z′tγk)∑2

j=1 exp
(
Ztγz

lj + γlj
) , l, k = 1, 2 (58)

where Zt =
(
ZtD

(1)
t−1, ZtD

(2)
t−1, D

(1)
t−1, D

(2)
t−1
)′
, with D

(j)
t = 1 if St = j and 0 otherwise,

j = 1, 2. Each parameter γk has four elements, γk = (γz
1k, γ

z
2k, γ1k, γ2k). For identification

reasons, one of the γk would equal zero, γk0 = 0. If k0 = 1, then

γ =

⎡
⎢⎢⎣

0 γz
12

0 γz
22

0 γ12
0 γ22

⎤
⎥⎥⎦ (59)

Assume that at iteration m, the sampled value of the regression coefficients would
violate the pre-defined state-identifying condition β11 < β12. This would imply re-ordering
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the states and the state-dependent parameters according to ρ = (2 1). The constrained
permutation step (iv) consists in:

for the state-dependent parameters and the states

β
(m)
k := β

(m)
ρ(k), ST,(m) := ρ(ST,(m))

for the state-dependent transition parameters (60)

γ̃
(m)
k :=

(
γ
z(m)
ρ(k),ρ(k)γ

(m)
ρ(k),ρ(k)

)
, with γ1 = 0

γ
(m)
k := γ̃

(m)
k − γ̃

(m)
1

For γ in (59) this would amount to:

γ =

⎡
⎢⎢⎣

0 γz
12

0 γz
22

0 γ12
0 γ22

⎤
⎥⎥⎦ , γ̃ :=

⎡
⎢⎢⎣

γz
22 0

γz
12 0

γ22 0
γ12 0

⎤
⎥⎥⎦ , γ :=

⎡
⎢⎢⎣

0 −γz
22

0 −γz
12

0 −γ22
0 −γ12

⎤
⎥⎥⎦

Note that the normalization γk := γ̃k − γ̃1 is important here to keep the same reference
state across simulations.

If random permutation sampling is chosen to visit all modes of the posterior, the
states, the state-dependent parameters and hyperparameters are randomly permuted in
step (iv) of the sampler. For a given permutation ρ at iteration m, we permute:

the state-dependent parameters and priors, states

β
(m)
k := β

(m)
ρ(k), b0k, B0k := b0ρ(k), B0ρ(k) (61)

ST,(m) := ρ(ST,(m))

state-dependent transition parameters and priors (62)

γ
(m)
k :=

(
γ
z(m)
ρ(k),ρ(k)γ

(m)
ρ(k),ρ(k)

)
, with γk0 = 0

g0k :=
(
gz0,ρ(k)ρ(k)g0,ρ(k)0ρ(k)

)
G0k := G0,ρ(k)ρ(k)

In this case, the normalization takes place after post-processing the MCMC output, i.e.
after re-ordering the sampled values according to a restriction:

γ
(m)
k := γ

(m)
k − γ

(m)
k0

, ∀k ∈ K−k0 , for a chosen k0.
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D Tables

Table 2: Simulated data. Inefficiency factors for γ. Scaled by the number of retained
iterations, and multiplied by 100 for expositional convenience. The autocovariance at
zero frequency is estimated taking into account 2,000 autocovariances.

Auxiliary sampling based on
RUM dRUM

Iterations retained Iterations retained
Random permutation: all(a) every 4th all every 4th
– unidentified model γz

12

γz
22

γ12
γ22

0.09
0.16
0.13
0.07

0.07
0.03
0.07
0.04

0.03
0.01
0.03
0.01

0.02
0.01
0.02
0.01

– identified model γz
12

γz
22

γ12
γ22

3.10
0.95
2.29
1.14

1.66
0.25
0.65
0.53

0.59
0.10
0.33
0.12

0.25
0.04
0.16
0.07

Constrained permutation all every 4th all every 4th
– identified model γz

12

γz
22

γ12
γ22

2.99
1.72
1.76
1.60

2.21
0.59
1.42
1.65

0.46
0.12
0.27
0.12

0.37
0.03
0.24
0.04

(a) The last 20,000 of a total of 50,000 iterations.
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Table 3: Two-pillar Phillips curve. No switching. 95% (first line) and 90% (second line)
highest posterior density interval in parentheses.

HP-filter 1970Q2-2010Q1 1983Q1-2010Q1
3 AR lags 1 AR lag

trend M3 growth 0.17 0.25
(0.02 0.33) (0.08 0.41)
(0.03 0.30) (0.11 0.39)

trend GDP growth 0.01 -0.05
(-0.20 0.26) (-0.27 0.18)
(-0.18 0.21) (-0.23 0.14)

trend change in gov. bond yield 0.48 -0.36
(-0.06 1.03) (-0.95 0.28)
(0.02 0.94) (-0.90 0.16)

cyclical output gap 0.07 0.02
(0.03 0.12) (-0.03 0.08)
(0.03 0.11) (-0.02 0.07)

Long run effects
trend M3 growth 0.75 0.53

(0.19 1.34) (0.21 0.83)
(0.24 1.19) (0.29 0.79)

trend GDP growth 0.13 -0.09
(-1.00 1.41) (-0.59 0.39)
(-0.77 1.22) (-0.48 0.31)

trend change in gov. bond yield 2.37 -0.75
(-0.42 5.92) (-1.98 0.63)
(0.10 5.28) (-1.88 0.33)

cyclical output gap 0.35 0.05
(0.10 0.66) (-0.08 0.17)
(0.15 0.61) (-0.05 0.15)
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Table 4: Two-pillar Phillips curve. Switching in effects of trend variables. 95% (first line)
and 90% (second line) highest posterior density interval in parentheses.

HP-filter 1983Q1-2010Q1
1 AR lag

Regime 1 Regime 2
trend M3 growth 0.09 0.73

(-0.21 0.35) (0.44 1.01)
(-0.15 0.32) (0.50 0.96)

trend GDP growth 0.29 -0.40
(-0.11 0.67) (-0.86 0.16)
(-0.04 0.61) (-0.82 -0.02)

trend change in gov. bond yield 0.12 -0.63
(-0.71 0.93) (-1.35 0.09)
(-0.56 0.80) (-1.21 -0.01)

cyclical output gap 0.02
(-0.04 0.08)
(-0.03 0.07)

Long run effects
trend M3 growth 0.10 0.83

(-0.23 0.41) (0.57 1.05)
(-0.17 0.37) (0.64 1.03)

trend GDP growth 0.33 -0.45
(-0.14 0.76) (-0.99 0.23)
(-0.05 0.69) (-0.93 -0.00)

trend change in gov. bond yield 0.14 -0.71
(-0.80 0.76) (-1.54 0.08)
(-0.67 0.91) (-1.37 -0.04)

cyclical output gap 0.02
(-0.05 0.10)
(-0.04 0.08)
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E Figures

Figure 1: Some examples: Nonlinear effect of the covariate on the state persistence
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Figure 2: Simulated data, the covariate Zt along with state 2 (top panel) and the time
series yt (bottom panel)
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Figure 3: Random permutation with dRUM auxiliary sampling for the transition distri-
bution. Simulated values of the regression parameters obtained from the random permu-
tation sampler (panel (a)). State-identified simulated values (panel (b)).

(a) Random permutation sampling
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(b) Identified model according to β11 < β12
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Figure 4: Random permutation with dRUM auxiliary sampling for the transition distri-
bution. Simulated values obtained from the random permutation sampler, scatter plots
of regressions parameters against constant transition parameters γk2, k = 1, 2.
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Figure 5: Random permutation with dRUM auxiliary sampling for the transition distri-
bution. Marginal distribution of selected parameters.

(a) Simulated values obtained from the random permutation sampler
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(b) Simulated values re-ordered according to β11 < β12
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Figure 6: Marginal distribution of simulated values obtained from constrained permuta-
tion with dRUM auxiliary sampling for the transition distribution. Based on inappropriate
restriction β21 < β22.
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Figure 7: Recovering the threshold (0.5 in simulated data). Values and marginal distribu-

tion of the threshold level (left panels). Scatter plots of Zt against ξ
(m)
11,t (blue), ξ

(m)
22,t (red)

implied by the mth simulated parameter value γ2, and of the threshold level against ξ
(m)
11,t

(green)
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Figure 9: M3 growth, HP-trend and low-frequency component (> 6 years).
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Figure 10: Scatter plot of sampled regression parameter against constant transition effect.
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Figure 11: Marginal posterior distribution of state-identified regression coefficients (solid
line, regime 2).
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Figure 12: Marginal posterior distribution of error variance and state-identified covariate
effects on the transition probability (solid line, regime 2).
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Figure 13: Posterior state probabilities along with HCIP inflation, mean-adjusted loans
growth and trend M3 growth. The horizontal line corresponds to a threshold level of 2.0
% quarterly credit growth rate, composed from an average of 1.7% growth rate and an
inferred 0.3% according to Definition 1 (see section ??)
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Figure 14: Median posterior transition probabilities.
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