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Abstract

We compare several machine learning methods for nowcasting GDP. A large mixed-
frequency data set is used to investigate different algorithms such as regression based
methods (LASSO, ridge, elastic net), regression trees (bagging, random forest, gradi-
ent boosting), and SVR. As benchmarks, we use univariate models, a simple forward
selection algorithm, and a principal components regression. The analysis accounts
for publication lags and treats monthly indicators as quarterly variables combined
via blocking. Our data set consists of more than 1,100 time series. For the period
after the Great Recession, which is particularly challenging in terms of nowcasting,
we find that all considered machine learning techniques beat the univariate bench-
mark up to 28 % in terms of out-of-sample RMSE. Ridge, elastic net, and SVR are
the most promising algorithms in our analysis, significantly outperforming principal
components regression.
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1 Introduction

Timely and accurate information on economic conditions, such as Gross Domestic Product

(GDP), is critical for effective policy-making. However, official statistics often suffer from

significant time delays, hindering policymakers’ ability to promptly respond to evolving

economic dynamics. To address this challenge, nowcasting procedures have been developed

to provide real-time estimates of economic indicators that draw upon a wide array of data

sources (see Bańbura et al., 2013, Evans, 2005, Giannone et al., 2008).

Traditionally, nowcasting methods have relied on statistical models, such as factor mod-

els (see e.g. Bańbura et al., 2013, Stock and Watson, 2002b) and single-indicator pooling

techniques (see e.g. Heinisch and Scheufele, 2018, Kuzin et al., 2013), to extract infor-

mation from diverse economic indicators1. While these methods have proven effective in

handling large datasets with different frequencies and release delays, recent advancements

in machine learning (ML) present new opportunities for enhancing nowcasting accuracy.

We ask ourselves the following question: Can machine learning (ML) algorithms be

used to enhance the accuracy of nowcasting gross domestic product (GDP)? The literature

on various machine learning techniques has grown in recent decades. Books, such as

Hastie et al. (2009) and James et al. (2013), analyze the benefits and techniques of various

machine learning algorithms in detail. Machine learning algorithms build statistical models

to explain data and then optimize the fit based on past data (supervised learning). The

algorithms continuously and autonomously update the parameters until a threshold of

accuracy has been met. It is important for policy makers, particularly for central banks,

to understand if these techniques can be leveraged for GDP nowcasting. In the case

of nowcasting, machine learning algorithms have the advantage that they can efficiently

handle large datasets with lots of potential regressors. Thus, ML algorithms can solve

the curse of dimensionality when there are many potential predictors and are a promising

alternative to the usual time-series regression based methods used by central banks for

nowcasting.

Galli et al. (2019) showed that a large data set is key to obtaining accurate nowcasts

1For Switzerland, these methods have been successfully applied by Galli et al. (2019) and Kronenberg
et al. (2023).
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for Swiss GDP. Instead of relying on standard factor models, we investigate whether

using machine learning algorithms can improve standard nowcasting methods. We use a

dataset with over 1,100 indicators and just 76 observations to nowcast Swiss GDP growth.

Therefore, we have a large data set with relatively small number of time periods. To

address the issue of overfitting and reduced accuracy in forecasting due to a limited number

of observations, we explore the potential benefits of using machine learning algorithms.

By leveraging advanced techniques in machine learning, we hope to improve the accuracy

of our nowcasting predictions despite limited available data.

In our analysis, we apply regression based methods: ridge (Hoerl and Kennard (1970)),

LASSO (Tibshirani (1996)), elastic net (Zou and Hastie (2005)), tree based ensemble

methods: bagging (Breiman (1996)), random forest (Breiman (2001)), boosting (Fried-

man (2001)) and support vector regression (SVR) with various kernels. To evaluate the

nowcasting performances of these machine learning models, we use root mean squared

forecast error (RMSE), a statistical measure of accuracy.

We add to the growing literature by central banks and other authors, such as Chinn

et al. (2023), Richardson et al. (2021), Döpke et al. (2017), Chakraborty and Joseph

(2017), Smalter Hall and Cook (2017), and Sermpinis et al. (2014), that have applied

machine learning for nowcasting economic activity. Our contribution is threefold. First,

we show how to deal with many indicators in the context of mixed frequencies and ragged

edges. Similarly to Bec and Mogliani (2015), we use blocking to handle mixed frequency in

our data set. We address the different publications dates of indicators, the ”ragged-edge”

phenomena, with realignment proposed by Altissimo et al. (2010). The combination of

these methods allows the policymaker to run nowcasting models straightforwardly in real

time. Second, we illustrate how to optimally tune various machine learning algorithms in

terms of cross-validation and shrinkage parameters. Third, our analysis suggests models

that work well for nowcasting GDP in Switzerland.

Our findings indicate that ML algorithms offer significant improvements in GDP now-

casting accuracy compared to traditional methods, with certain algorithms achieving up

to 28% reduction in out-of-sample RMSE. Importantly, the superiority of ML methods

is consistent across different time periods, suggesting robust performance across varying

economic conditions.
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Contrary to expectations, our results suggest that linear ML algorithms, such as ridge

regression, elastic net, and SVR with a linear kernel, outperform non-linear methods in

GDP nowcasting. This underscores the importance of algorithm selection and parame-

ter tuning to achieve optimal forecasting outcomes when using a large macroeconomic

indicator set.

Our results indicate that in terms of GDP nowcasting, non-linearity is not the driver

of the superiority of ML methods over traditional methods. Non-linear methods such as

tree-based procedures or support vector regression with higher order kernels are not able

to improve linear methods such as elastic net, ridge regression, or support vector regression

with a linear kernel. Linear procedures in combination with the use of cross-validation

seem to give the best nowcasting results.

In summary, this paper contributes to the ongoing discourse on integrating ML tech-

niques in economic forecasting, offering insights into their effectiveness in enhancing GDP

nowcasting accuracy. The subsequent sections detail the methodology, data sources, em-

pirical results, and concluding remarks.
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2 Methodology

In this section, we provide an overview of the various methods that we use for nowcasting

GDP. We estimate three relatively standard models that will serve as benchmarks and

various machine learning algorithms that we compare to the performance of benchmark

models in terms of RMSE.

2.1 Benchmark models

We estimate three benchmark models: the Univariate Autoregressive (AR) model, Prin-

cipal Component Analysis (PCA), and Forward Subset Selection (FSS). The AR model is

our simple first benchmark. PCA is our hard-to-beat benchmark, as it is the foundation

of most nowcasting models and has been shown to be very successful for GDP forecasting

(see e.g. Giannone et al., 2008, Stock and Watson, 2002b). The FSS serves as a way to

think about variable selection. Estimating these benchmarks will involve making choices

about certain model specific parameters, such as lag order in the AR model or the number

of principal components in the PCA model. Traditionally information criteria, such as

the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC), can

be used to determine such critical choices. Those measures balance the fit of the model

to the data against its complexity. In general, the BIC places a larger penalty on models

with many variables and therefore, is expected to perform better than the AIC in a set

up with many predictors, such as ours2. As a first approach, we use the BIC to determine

parameter choices in benchmark models. Later, in section 4.2, we make the same choices

with cross-validation to see if incorporating learning from the data in itself improves the

benchmark models.

The univariate autoregressive (AR) model is a natural first benchmark. We esti-

mate an AR model of lag order q that can be expressed as:

yt =

q∑
i=1

ϕiyt−i + εt, (1)

2The AIC penalizes models for the number of parameters less harshly compared to the BIC.
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where yt is the dependent variable at time t, ϕ1, ϕ2, . . . , ϕq are the coefficients of the lagged

dependent variables, yt−1, yt−2, . . . , yt−q and εt is the error term at time t.

One important consideration when working with AR models is the choice of lag order

q. We use the BIC to determine the lag order q.

A factor model is used as a second, more sophisticated multivariate benchmark model.

The basic idea of factor models is that a small number of latent variables (i.e., factors) can

well approximate the fluctuations of many macroeconomic variables. Stock and Watson

(2002b) and Stock and Watson (2002a) have suggested PCA, which can well approximate

a Dynamic Factor Model when the number of variables is sufficiently large. The factor

model allows one to characterize the interactions of a large number of variables within a

relatively parsimonious framework and it has been found to be very successful in terms of

nowcasting GDP. Given the factors, the forecast equation for GDP is simply

yt = c+

q∑
i=1

δifit + ut, (2)

where yt is the dependent variable at time t, δi is the coefficient for the ith factor, fit is

the ith factor at time t, and ut is the error term at time t.

The factors are extracted by PCA. The principal components, fit, are defined as linear

combinations of the original p variables, xjt, such that:

fit =

p∑
j=1

λijxjt, (3)

where λij is the jth loading for the ith principal component. PCA aims to find a linear

combination of the original variables that captures the maximum amount of variation in

the data, so that the resulting q principal components can be ordered by the amount

of variation that they are able to explain in the total data set (j = 1, ..., q, ..., p). The

individual PCs are uncorrelated with each other.

Since q ≪ p, the procedure reduces the dimension of the data used for nowcasting

from p indicators to a much smaller number of q principal components that explain GDP.

This enables us to work with a dataset, where the number of indicators p is much larger

than observations T . The key is to choose the correct number of principal components q
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to include in our model. In line with Stock and Watson (2002b) we use the BIC to assess

the optimal q.

A forward subset selection (FSS) is used as a third benchmark. FSS is a method

used in regression analysis to select a subset of predictor variables that are most useful to

predict a response variable. Let Q be the total number of useful predictors. The forward

subset selection model can be expressed as:

yt = β0 +

Q∑
q=1

βqxqt + εt, (4)

where yt is the dependent variable at time t, β0 is the intercept term, βq is the coefficient

for the qth predictor, xqt is the value of the qth predictor at time t, εt is the error term at

time t, and Q is the number of predictors included in the final model.

The method begins by fitting a simple linear regression model separately for each of Q

predictor variable, and then selecting the variable with the highest correlation or lowest

p-value as the initial predictor variable. Then, additional predictor variables are added to

the model one by one, in order of decreasing correlation or increasing significance, until a

stopping criterion is met. Clearly, the stopping criterion is crucial in this algorithm. We

use the BIC to find the optimal model and set Q to minimize the BIC.

2.2 Machine learning methods

We use various models to learn from the data and then use them to make an out of sample

nowcast. The exact procedure is described in section 3 and results are reported in section

4.

2.2.1 Regression based methods

Models used in this subsection are all linear and follow a standard regression model which

is

yt = β0 +

p∑
j=1

βjxjt + εt, (5)

where yt is the dependent variable at time t, β0 is the intercept term, βj is the coefficient

for the jth predictor, xjt is the value of the jth predictor at time t, εt is the error term at
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time t, and p is the number of predictors in the model.

The approaches that we use are known as shrinkage or regularization methods. The

intention is to fit a model that takes all p predictors into consideration. The estimated

coefficients are shrunken towards zero relative to the OLS estimate, which has the effect of

reducing the variance (James et al., 2013). The advantage of shrinkage methods over OLS

can be explained by the bias-variance trade-off. Particularly, in cases where the number of

coefficients is larger than the number of observations (where OLS has no unique solution),

shrinkage works well because a small increase in bias can be traded-off for a large increase

in variance.

Ridge regression The ridge regression model, which was first proposed by Hoerl and

Kennard (1970), is a regularized linear regression technique that adds a penalty term to

the sum of squared errors to shrink the regression coefficients towards zero. The ridge

regression model’s objective function can be expressed as

T∑
t=1

(yt − β0 −
p∑

j=1

βjxjt)
2 + λ

p∑
j=1

β2
j , (6)

where yt is the dependent variable at time t, β0 is the intercept term, βj is the coefficient

for the jth predictor, xjt is the value of the jth predictor at time t, εt is the error term at

time t, and p is the number of predictors in the model.

The ridge estimator of the regression coefficients, β, is given by the following closed-

form solution

β̂ = (X
′
X + λI)−1X

′
y,

where β̂ridge represents the ridge estimator of the regression coefficients, X is an T × p

matrix of predictor variables, y is an T × 1 vector of response variables, λ is the tuning

parameter (ridge penalty) that controls the amount of shrinkage applied to the coefficients,

and I is the p× p identity matrix. Note that the ridge estimator is a biased estimator, as

it introduces a bias towards zero in the coefficient estimates. However, this bias is often

considered a reasonable trade-off for the reduction in variance, particularly when dealing

with high-dimensional data.

8
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The lambda value controls the strength of the penalty and determines the amount

of shrinkage applied to the coefficients. A larger value of λ results in greater shrinkage

with many coefficients near zero, while a smaller value of λ results in less shrinkage and a

coefficients that are closer to their OLS counterparts.

Ridge regression can handle high-dimensional data sets with many predictors and can

effectively handle multicollinearity between the predictors by shrinking their coefficients

towards zero, but without forcing them to be exactly zero as in LASSO regression that

will be described below. Ridge regression tends to perform better for models where yt is

truly a function of many predictors without any predictor being especially influential.

Least Absolute Shrinkage and Selection Operator (LASSO) LASSO regression

is a regularization method used in linear regression to select a subset of relevant predictors

and to reduce the impact of irrelevant predictors by imposing a penalty on their coefficients.

Proposed by Tibshirani (1996), the LASSO regression adds a penalty term to the sum of

squared errors to shrink the regression coefficients towards zero and then performs variable

selection. The objective function is the sum of squared errors plus the LASSO penalty

term:

T∑
t=1

(yt − β0 −
p∑

j=1

βjxjt)
2 + λ

p∑
j=1

|βj |, (7)

where λ is the LASSO hyperparameter, which controls the strength of the penalty, and

the amount of shrinkage applied to the regression coefficients. A larger value of λ results

in greater shrinkage and more coefficients set to zero, while a smaller value of λ results

in less shrinkage and more coefficients retained. Unlike for ridge regression, there is no

closed-form solution for the estimator of LASSO regression coefficients.

LASSO works well if there are some very influential predictors and some that have

little to no effect, as it delivers a sparse model that involves only a subset of the original

p predictors.

Elastic Net is a regularization method introduced by Zou and Hastie (2005) that com-

bines both LASSO and ridge regularization techniques to achieve a balance between vari-

able selection and coefficient shrinkage. The elastic net objective function can be repre-
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sented mathematically as follows:

T∑
t=1

(yt − β0 −
p∑

j=1

βjxjt)
2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j , (8)

where yt is the dependent variable at time t, β0 is the intercept term, βj is the coefficient

for the jth predictor, xjt is the value of the jth predictor at time t, εt is the error term

at time t, and p is the number of predictors in the model. Furthermore, λ1 and λ2

are the elastic net parameters, which control the amount of shrinkage applied to the

regression coefficients. The parameter λ1 controls the amount of LASSO-like penalty,

while λ2 controls the amount of ridge-like penalty.

Elastic net combines the strengths of ridge and LASSO regression. It can select a subset

of relevant predictors by setting some coefficients to exactly zero, while also allowing for

correlated predictors to be selected together.

2.2.2 Tree based methods

Tree-based methods generally involve splitting the predictor space into a number of regions

and make predictions using the mean of observations in the region to which it belongs. The

regression tree model is a non-parametric regression technique that recursively partitions

the predictor space into subregions and fits a separate constant value in each subregion.

This model can be expressed as:

yt =

M∑
m=1

cmI(xt ∈ Rm),

where yt is the dependent variable at time t, xt is the vector of predictor values at time t,

Rm is themth subregion of the predictor space, cm is the mean value for themth subregion,

and M is the number of subregions in the tree. The predictor space X consisting of

x1, x2, ..., xp is divided into J distinct and non-overlapping regions, R1, ..., RJ . For every

observation that falls into Rj , we make the same prediction, which is the mean of the

outcome variable for the training observations in Rj .

To find the regions, we need to apply a top-down strategy which is called recursive

splitting. The splitting rule sees to maximize the reduction in the sum of squared errors

(SSE) between the predicted values and the actual values so that the resulting tree has

10
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the lowest SSE. Namely, we choose R1(j, s) and R2(j, s) to minimize:

∑
x∈R1(j,s)

(yi − ŷR1)
2 +

∑
x∈R2(j,s)

(yi − ŷR2)
2,

where j is the index of the predictor variable, s is the splitting threshold for the predictor

variable, ŷR1 is the mean responds in R1 and ŷR2 is the mean responds in R2. Therefore,

we need to find values for j and s to minimize this expression, which can be accomplished

rather quickly when p is not too large. This process is repeated for the next best predictor

and cutoff point and will be repeated until a stopping criterion is reached.

More precisely, in our analysis, we use ensemble learning methods that involve com-

bining many trees and that are described below.

Bagging is the short version of bootstrap aggregation, which is a general statistical

method for reducing the variance of a learning procedure. The bagging regression tree

model is an learning method that takes advantage of averaging over multiple regression

trees to improve the predictive accuracy and to reduce overfitting. The bagging regression

tree model can be expressed as:

yt =
1

B

B∑
b=1

fb(xt), (9)

where yt is the dependent variable at time t, xt is the vector of predictor values at time t,

B is the number of trees in the ensemble, and fb(xt) is the prediction of the bth regression

tree for the predictor vector xt.

Given the original training set, B separate training sets are calculated by bootstrapping

and computing a regression tree fb(xt) is computed for each bootstrapped data set. Finally,

all predictions f1(xt), ..., fB(xt) are averaged and this gives the bagged predictor for yt.

The intuition is that each individual tree has high variance, but low bias. Averaging over

B dramatically reduces the variance.

The bagging regression tree model is a powerful and flexible machine learning method

that can be applied to a wide range of predictive modeling tasks. However, it can be

computationally intensive and difficult to interpret, especially when the number of trees

and predictor variables is large.
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Random Forest is an ensemble learning method first proposed by Breiman (2001) that

is very similar to bagging. Similar to bagging, it combines multiple decision trees to

improve the predictive accuracy and to reduce overfitting, however it also tries to increase

robustness by introducing randomness in the predictors considered at each split. The

random forest model can be expressed as:

yt =
1

B

B∑
b=1

fb(xt),

where yt is the dependent variable at time t, xt is the vector of predictor values at time t,

B is the number of trees in the forest, and fb(xt) is the prediction of the bth tree for the

predictor vector xt.

Similar to bagging, we built a number of decision trees on bootstrapped samples. How-

ever, for each split of the tree, only a random sample of m predictors are used as candidates

instead of the full sets of predictors. This randomness helps reduce the correlation among

the trees and to increase the diversity of the forest. We choose m =
√
p (bagging implies

m = p).

Gradient boosting is our third ensemble learning method that combines multiple weak

regression trees to improve the predictive accuracy. The boosting regression tree model

can be expressed as:

yt =

B∑
b=1

αbfb(xt), (10)

where yt is the dependent variable at time t, xt is the vector of predictor values at time

t, B is the number of trees in the ensemble, fb(xt) is the prediction of the bth regression

tree for the predictor vector xt, and αb is the learning rate that is a form of shrinkage for

a value less than 1.

The boosting regression tree model sequentially builds trees to correct the errors of the

previous trees. At each iteration, the tree is built using the residual errors of the previous

trees as the dependent variable and the learning rate scales the update of the model. One

of the critical hyperparameters is the choice of number of learning cycles, i.e., the number

of trees, to include in the model.
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the trees and to increase the diversity of the forest. We choose m =
√
p (bagging implies

m = p).

Gradient boosting is our third ensemble learning method that combines multiple weak

regression trees to improve the predictive accuracy. The boosting regression tree model

can be expressed as:

yt =

B∑
b=1

αbfb(xt), (10)

where yt is the dependent variable at time t, xt is the vector of predictor values at time

t, B is the number of trees in the ensemble, fb(xt) is the prediction of the bth regression

tree for the predictor vector xt, and αb is the learning rate that is a form of shrinkage for

a value less than 1.

The boosting regression tree model sequentially builds trees to correct the errors of the

previous trees. At each iteration, the tree is built using the residual errors of the previous

trees as the dependent variable and the learning rate scales the update of the model. One

of the critical hyperparameters is the choice of number of learning cycles, i.e., the number

of trees, to include in the model.
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2.2.3 Support Vector Regression

Support Vector Machines (SVM) have been proposed as an approach for classification in

the 1990s (Cortes and Vapnik (1995),Boser et al. (1992), Vapnik (1999)) and have gained

some popularity. The approach can be also adapted for regression with a quantitative

response, Support Vector Regression (SVR), that inherits some of the properties of the

SVM classifier (see, e.g., Hastie et al., 2009). In the case of SVR with a linear kernel, the

model aims to fit a linear function

f(xt) = x
′
tβ

to the data. To estimate the weight matrix β, we want to minimize

H(β) = C
T
t=1

V (yt − x
′
tβ) +

1

2
||β||2, (11)

whereas

V (yt − x
′
tβ) =



0 if |yt − x

′
tβ| < ϵ

|yt − x
′
tβ| − ϵ, otherwise.

The first term in equation (11) represents the loss function for the t-th data point and

quantifies the difference between the predicted and the actual target value. The second

term represents a regularization term that prevents overfitting. This method requires the

parameters ϵ and C to be chosen, whereas ϵ is the threshold parameter of the loss function

and C is a regularization parameter. Note that the error measure ignores residuals of size

less than ϵ. Thus, SVR can handle outliers and is relatively robust to overfitting.
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3 Data and forecast setup

3.1 Data

To nowcast GDP growth in Switzerland we use a mixed-frequency data set of over 500

domestic and foreign indicators, covering the period from 2001 Q1 to 2019 Q4. The Swiss

GDP is published quarterly by the State Secretariat for Economic Affairs (SECO) and

annually by the Swiss Federal Statistical Office (FSO) with a considerable lag, making

it important for policy makers to nowcast the current state of the economy in real-time.

Our data set is comprised of both quarterly and monthly variables, with approximately

300 monthly and 200 quarterly variables used. These variables have been transformed

to be stationary where necessary. This data set has been previously utilized in studies

by Galli (2018) and Galli et al. (2019). Galli (2018) provides a comprehensive overview

of the data set, categorizing the indicators into four main categories: hard data, soft

data, foreign indicators, and financial indicators. The indicators within the data set

cover a wide range of economic activity, including labor market, consumption, investment,

foreign trade, foreign activity, financial markets, prices, as well as construction, retail

trade, wholesale trade, accommodation, manufacturing, project engineering, banking, and

insurance sectors. This diverse set of indicators allows for a comprehensive analysis of the

Swiss economy and provides valuable insights into the factors that impact GDP growth.

3.2 Mixed-frequencies and ragged-edges

To address mixed-frequencies of our indicators, we use the blocking method that treats

higher-frequency data as multiple lower-frequency series. In our case, this implies splitting

the monthly data into three quarterly series, as illustrated by figure 1. The first quarterly

series proxies quarterly observations with first months of each quarter (January, April,

July, and October), the second series uses observations from the second month (February,

May, August, and November), and the last collects observations from the third month

(March, June, September, and December).

The blocking solution to mixed-frequency and ragged edge data problems has many

advantages highlighted by Bec and Mogliani (2015). First, it is very flexible, as it can
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Figure 1: The blocking method treats higher-frequency data as multiple lower-frequency data. In our
case, one monthly indicator becomes three quarterly series.

be handled in many possible modelling frameworks. Second, this approach allows the

forecaster to exploit the partially available data directly at any time when nowcasting,

without a need to extrapolate the missing information. Third, the blocking approach

readily allows the forecaster to evaluate and interpret the signals provided by changes in

the current economic activity in terms of GDP growth.

After having transformed the indicators into quarterly series using blocking, we realign

the data set to adjust for missing values. Realignment is a technique proposed by Altissimo

et al. (2010). Most of the indicators have different publication dates and therefore, not all

of the observations are readily available in real-time.

In our setup, we focus on a specific information set within the quarter, namely, the

beginning of the third month. While multiple states of data could be considered, we select

this particular point as it reflects the most relevant nowcast situation for Switzerland.

Institutions like the Swiss National Bank typically update their forecasts quarterly upon

receiving new GDP figures. Hence, employing a realistic unbalanced dataset is essential

to capture these publication lags effectively.

To deal with this so called ”ragged-edge” phenomena, we apply a vertical realignment
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technique in which the old series with a missing value is replaced by a realigned series.

The process is illustrated by figure 2. We want to nowcast GDP growth (y) using various

p indicators (x). For example, series x2 is available with one lag and therefore, we replace

the series x2 with realigned series x̃2 = lag(x2).

t=T

t=T-1

...

t=1

y x1 x2 x3 y x1 x̃2 x̃3

Figure 2: Colored columns represent available data, with each color representing one time series. Grey
cells represent missing values and lighter colored cells represent last available observation. We want to
make a forecast of y for time t=T and therefore, we realign all the indicators x to T. The lagged series
replace the old ones.

3.3 Recursive nowcasting

The blocking and realignment yields a balanced quarterly panel of p = 1139 candidate

indicators and t = 76 observations. We use this data set to perform recursive nowcasts

for Swiss GDP growth from 2009 Q3 to 2019 Q4, with the last nowcast made for 2019

Q4 using data up to December 3rd, 2019. For most methods, including PCA, shrinkage

methods, and SVR, we standardize all indicators in each nowcasting round, ensuring

each indicator has a mean of zero and unit variance in our estimation sample. Figure 3

illustrates the recursive nowcasting process. For example, the first nowcast is done for

2009 Q3. We use data from 2001Q1 to 2009Q2 to train and test via cross-validation for

optimal hyperparameters in our machine learning models, which we then use to nowcast

out-of-sample 2009Q3. In the next period, we use data from 2001Q1 to 2009Q3 to train

and test for the optimal model and subsequently, use it to nowcast 2009 Q4.

More precisely, data is divided into portion reserved for cross-validation and the last

period reserved for an out-of-sample nowcast. Data part reserved for cross-validation

consists of training and testing data. We use k-fold cross-validation to make decisions
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Data t=76

Train & Test with cv OOS

Train & Test with cv OOS

Train & Test with cv OOS

2001Q1 2009Q3 2019Q4

Time

Figure 3: Graph illustrates recursive nowcasting. OOS stands for Out-Of-Sample nowcasting. The first
OOS nowcast is made for 2009 Q3, whereas the last one is done for 2019 Q4. The blue area called ”Train
& Test” is used to select the optimal tuning of model used for OOS nowcasting. The model is chosen via
cross-validation (CV).

about hyperparameters in our models. We will display the results for five-fold cross-

validation. This involves dividing the cross-validation portion of the dataset into random

five equal-sized subsets, or folds. The model is trained on four folds, while the remaining

one fold is held back to serve as the validation set. This process is repeated five times, with

each fold serving as the validation set once. By rotating the validation set across different

folds, we obtain a robust estimate of the model’s performance. We identify the optimal

hyperparameters by minimizing forecast errors within the validation set. Table 1 provides

an overview of the model specific hyperparameters that are described in section 2. The

table summarizes the hyperparameters that we are tuning and their corresponding ranges

from which we are searching for the optimal value via cross-validation3. Subsequently,

we use the OOS period to evaluate the predictive accuracy of the fitted model with the

optimal hyperparameters. More details on cross-validation are provided in Appendix A.4.

All models are implemented in R with Appendix A.3 providing an exact overview of

packages being used for estimation. For not specified parameters we use default value

from respective R package.

3Please note that the equation (8) for the elastic net can be rewritten as
∑T

t=1(yt−β0−
∑p

j=1 βjxjt)
2+

λ(α
∑p

j=1 |βj | + (1 − α)
∑p

j=1 β
2
j ), whereas the hyperparameters in equation (8) are defined as λ1 ≡ λα

and λ2 ≡ λ(1− α). For α = 0, we have the ridge regression and for α = 1 we have the LASSO regression.
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Table 1: Hyperparameters Overview

Model Hyperparameters Range

LASSO λ 0.0005 – 1

Ridge λ 0.01 – 10

Elastic net
λ 0.01 – 10
α 0.01 – 0.99

Bagging No. of trees 1000

Random Forest
No. of trees 1000

No. of predictors at each split 100 – 500

Boosting
No. of trees 500 – 1500
Learning rate 0.001 – 0.1
Tree depth 1 – 5

SVR
C 0.01 – 2
ϵ 0.01 – 0.3

Notes: The table reports the hyperparameters (column 2) of various models that are estimated with
five-fold cross-validation from ranges reported in column 3.

3.4 Forecast evaluation

We compare the nowcasting accuracy of machine learning models to benchmark models.

Our primary evaluation metric is the RMSE, a common measure of forecasting accuracy,

calculated as:

RMSE =

√∑T
t (yt − ŷt)2

T
=

√√√√ 1

T

T∑
t=1

ê2t , (12)

whereas yt is the realized GDP growth, ŷt is the nowcast by the respective model, T is

the number of out-of-sample nowcasts, and êt denotes the forecast error of the model. To

gain an overview of average forecast properties of the different ML models, we look at

relative RMSEs and compute the average forecast gains in percentage terms of each ML

method compared to the AR and PCA models. For robustness, we also consider A.1.3

another loss function, mean absolute error (MAE), to compare the nowcasting accuracy

of our considered models in the appendix. The MAE is given by
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MAE =
1

T

T∑
i=1

|yi − ŷi|. (13)

Additionally, we evaluate whether the ML model forecasts are systematically better

than the benchmarks. This evaluation must be judged by statistical tests of equal predic-

tive ability. We will use the Diebold and Mariano (1995) test to compare the significance

of performance of each model to the AR and PCA benchmarks.

Moreover, we look at the cumulative differences in squared forecast errors (CDSFE)

between the best performing ML models and the PCA. This allows us to investigate the

predictive gains over time in our evaluation sample. The CDSFE of model i at time t is

defined as

CDSFEt =
t∑

s=1

ê2s,i −
t∑

s=1

ê2s,PC . (14)

A negative value of CDSFEt indicates that the forecasting model under examination

outperforms the PCA model by reporting a smaller value of cumulative squared errors.

Lastly, we check whether the forecasts of the PCA and each of the ML model encompass

each other. If the PCA forecast model encompasses each ML forecast model, then it implies

that the PCA provides all the necessary information and that a combination with the ML

model does not lead to any further improvement. Then we would conclude that the PCA

model is superior and the ML model can be classified as redundant. On the contrary, if

the ML forecast model encompasses the PCA model, then it implies that the ML model is

clearly superior. Encompassing in a forecasting concept can be illustrated by the following

regression:

yt = λŷt,i + (1− λ)ŷt,PC + ut, (15)

where ŷt,PC denotes the forecast from the PCA model, and ŷt,i is the forecast from ML

model i. λ = 0 then implies that the PC model encompasses the ML model i and λ = 1

implies that the ML model i encompasses the PC model (Chong and Hendry, 1986).

Generally, λ is the optimal weight of the combined forecast of model i and model PC.

If λ is somewhere between zero and one, then a combined forecast is better than one of
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the individual forecast. To implement this test, we employ Harvey et al. (1998)’s forecast

encompassing test. It is based on a simple transformation of equation (15) and equals

êt,PC = λ(êt,PC − êt,i) + vt, (16)

which is expressed in terms of forecast errors.
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4 Results

We compare the nowcasting performance of various models described in section 2 using

forecast evaluation methods described in section 3.

4.1 Baseline specification

Table 2 provides a first overview of results. In the first column, the RMSEs from the

recursive nowcasting exercise are displayed, whereas the second and third columns report

the relative gains/losses in terms of RMSE to benchmark models AR and PCA. We use

the Diebold and Mariano (1995) test to assess the significance of difference in nowcasting

accuracy. The stars in columns two and three represent the significance levels of one-sided

Diebold-Mariano test, whereas the exact corresponding p-values can be found in appendix

A.2.

Table 2: Results Overview

Model RMSE Benchmark comparison

AR PCA

AR 0.421 25%
PCA 0.337 -20%∗∗

FSS 0.486 15% 44%
LASSO 0.315 -25%∗∗ -6%
Ridge 0.310 -26%∗∗ -8%∗

Elastic Net 0.303 -28%∗∗∗ -10%∗∗

Bagging 0.354 -16%∗∗ 5%
Random Forest 0.353 -16%∗∗ 5%
Boosting 0.339 -19%∗∗ 1%
SVR 0.308 -27%∗∗∗ -8%∗

Notes: The table reports in column 2 the RMSE of models described in section 2. The models were
estimated via five-fold cross-validation. Columns 3 and 4 show relative gains/losses in terms of RMSE
compared to benchmark models AR and PCA, respectively. The stars represent the significance levels of
one-sided Diebold-Mariano test: ∗∗∗ significant at 1%, ∗∗ significant at 5%, ∗ significant at 10%.

All machine learning models considered reduce the RMSE compared to the AR bench-

mark with all of them significantly outperforming the AR benchmark. Especially, SVR

with a linear kernel and elastic net do so by improving RMSE by 27% and 28%, respec-
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tively. When it comes to our strong benchmark PCA, only the linear methods (LASSO,

ridge, elastic net, and SVR) improve the nowcasting accuracy relative to it. However, it

is important to note that ridge, elastic net, and SVR do so on a significant level, meaning

that there are nowcasting gains to be had from these methods. The elastic net improves

the PCA benchmark by 10%, whereas ridge and SVR with a linear kernel both improve

the accuracy by 8%.

We see that regression based methods (LASSO, ridge, elastic net, and SVR) with

a linear kernel perform better than the non-linear tree methods, which suggests a linear

relationship between indicators and GDP. This argument is strengthened by the result that

the SVR with a linear kernel outperforms the SVR with other kernels such as polynomial

and radial. More detailed results considering the SVR with other kernels are shown in

appendix A.1.2.

Furthermore, ridge regression performing better than LASSO in both baseline version

shown in table 2 as well as lagged version displayed in appendix A.1.1 seems to suggest

that many of the predictors considered matter roughly in equal size and there are not

any substantially more important predictors. This is in line with Galli et al. (2019), who

showed that a large data set is essential for obtaining precise nowcasts of Swiss GDP. This

suggests that for Switzerland, as a small open economy, many very different indicators

matter, unlike for an economy such as the US.

4.2 Additional results

Stability over time

To investigate the sensitivity of our baseline results, we look at the forecast performance

of the most promising models over time. The cumulative difference in squared forecast

errors (CDSFE) is computed between each of the three best performing ML models and

the PCA benchmark and plotted against the forecasting horizon to visualize the error

accumulation over time. Figure 4 illustrates the difference in cumulative errors over time.

It plots the CDSFEs of ridge, elastic net, and SVR with a linear kernel relative to the

PCA against the nowcasting horizon. These relative cumulative errors remain below zero

over the entire forecast period and they decline uniformly. This indicates that the ML
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Figure 4: Cumulative difference in squared forecast errors (CDSFE) between the three best performing
ML models and the PCA benchmark.

models show a stable improvement in nowcasting accuracy over the PCA method.

Do ML methods encompass traditional nowcast methods?

Next, we investigate whether some of the ML models outperform the benchmark PCA

in terms of encompassing. Table 3 shows the corresponding results. Interestingly, ridge,

SVR, and elastic net seem to encompass the PCA model. This is shown by a significant

λ that is close to 1. It implies that those models already contain all information for the

GDP nowcast relative to the PCA. This indicates that a combination of those models with

PCA will not lead to further improvements in terms of forecast ability. On the other hand,

tree methods (e.g., bagging and random forest) are not able to improve the PCA. This

implies that those methods do not add any information to the PCA benchmark. LASSO

and boosting are the two methods, where a combination between ML and traditional PCA

models seems to improve the GDP nowcast relative to using a single method.

23



24

Table 3: Encompassing Test

Test regression: yt = λŷt,i + (1− λ)ŷt,PC + ut

Model λ p-values

H0 : λ = 0 H0 : λ = 1

Ridge 0.918 0.001 0.755
LASSO 0.613 0.000 0.002
Elastic Net 0.748 0.000 0.099
Bagging 0.324 0.250 0.015
Random Forest 0.330 0.209 0.010
Boosting 0.473 0.060 0.031
SVR 0.791 0.001 0.364

Notes: The table reports the results of encompassing test. We test whether a specific ML model
encompasses the PCA. λ is the optimal weight of the combined forecast of the ML and PCA models.

Can the traditional methods be improved by cross validation?

In our benchmark models (PCA and FSS), described in section 2, we decided the critical

parameters using the BIC. The BIC is based on the available data and may not guarantee

optimal performance on out-of-sample data. Of course, we could use cross-validation that

directly estimates model’s performance on unseen data to choose the number of principal

components q included in the PCA and the number of predictors Q included in the FSS4.

Therefore, we apply the same five-fold cross-validation procedure as we did with ML

methods.

Table 4: Benchmark models with cv

Model RMSE gains
BIC cv in %

PCA 0.337 0.317 -5.9
FSS 0.486 0.408 -16.0

Notes: The table compares the RMSE of the benchmark models, PCA and FSS, for different choice
methods of parameters. Crucial parameters were selected with either the BIC (column 2) or five-fold
cross-validation (column 3). Column 4 reports the relative gain/loss.

4Please note that five-fold cross-validation was purposefully not used for the AR benchmark. For AR
model, the time series dimension is of critical importance and the five-fold cross-validation applied here
does not respect the temporal structure of the data.
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Results for this exercise can be seen in table 4. We see that determining these crucial

parameters by learning from the data improves the nowcasting accuracy. However, the gain

is relatively modest for the factor model approach (i.e., PCA), where the RMSEs decline

by around 6% and not fully converge to the best ML methods. The FSS with cross-

validation improves by 16% compared to the BIC based version, which indicates that the

standard forward selection with an information criterion based stopping rule suffers from

overfitting. The version with cross-validation is now better than the univariate benchmark

but still worse than all other ML procedures. Generally, cross-validation seems to be a

good and more robust alternative to information criteria in finding an appropriate factor

model or to determine the optimal stopping rule in forward selection.
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5 Conclusion

In this paper, we explored the potential of machine learning algorithms to enhance the

accuracy of GDP nowcasting using a comprehensive set of economic indicators for Switzer-

land. We addressed the challenges posed by mixed frequencies and ragged edges through

the use of blocking and realignment techniques. By optimizing various shrinkage param-

eters through cross-validation, we ensured robust model performance.

Our empirical analysis demonstrated that machine learning methods significantly out-

perform traditional autoregressive benchmarks. Specifically, the elastic net model achieved

a 28% improvement in nowcasting accuracy, as measured by RMSE. Ridge regression, elas-

tic net, and support vector regression with a linear kernel emerged as the best-performing

models, consistently surpassing the principal component analysis benchmark.

Contrary to our initial expectations, linear machine learning algorithms outperformed

their non-linear counterparts in the context of GDP nowcasting. This finding under-

scores the critical role of algorithm selection and parameter tuning when leveraging large

macroeconomic indicator sets.

The cumulative differences in squared forecast errors between our best-performing

models and the PCA benchmark highlight the stability and reliability of machine learning

approaches in enhancing nowcasting accuracy. These results suggest that non-linearity is

not the primary driver of machine learning methods’ superiority over traditional techniques

in this domain.

Overall, our study contributes to the growing body of literature on the application

of machine learning in economic forecasting. We provide evidence that machine learning

algorithms can offer substantial improvements in the accuracy of GDP nowcasts, providing

policymakers with more timely and reliable economic insights. Future research could

further explore the integration of additional data sources and the application of other

advanced machine learning techniques to continue improving the precision of economic

forecasts.
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Bańbura, M., D. Giannone, M. Modugno, and L. Reichlin (2013): “Nowcasting

and the real-time data flow,” in Handbook of economic forecasting, Elsevier, vol. 2,

195–237.

Bec, F. and M. Mogliani (2015): “Nowcasting French GDP in real-time with surveys

and “blocked” regressions: Combining forecasts or pooling information?” International

Journal of Forecasting, 31, 1021–1042.

Boser, B. E., I. M. Guyon, and V. N. Vapnik (1992): “A training algorithm for op-

timal margin classifiers,” in Proceedings of the fifth annual workshop on Computational

learning theory, 144–152.

Breiman, L. (1996): “Bagging predictors,” Machine learning, 24, 123–140.

——— (2001): “Random forests,” Machine learning, 45, 5–32.

Chakraborty, C. and A. Joseph (2017): “Machine learning at central banks,” .

Chinn, M. D., B. Meunier, and S. Stumpner (2023): “Nowcasting World Trade with

Machine Learning: a Three-Step Approach,” Tech. rep., National Bureau of Economic

Research.

Chong, Y. Y. and D. F. Hendry (1986): “Econometric evaluation of linear macro-

economic models,” The Review of Economic Studies, 53, 671–690.

Cortes, C. and V. Vapnik (1995): “Support-vector networks,” Machine learning, 20,

273–297.

Diebold, F. X. and R. S. Mariano (1995): “Comparing predictive accuracy,” Journal

of Business and Economic Statistics, 13, 253–263.

27



28
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A Appendix

A.1 Additional Results

In this section, we report the results of various additional modifications of the baseline

version displayed in section 4.

A.1.1 Additional Results: Including lagged predictors

We allow for a lag of each predictor p to be included in ML models. We re-estimate the

machine learning models with setup described above, but now also include a lag of order

one from all of the predictors p. This means that we have a panel of t = 75 observations

and p̃ = 2278 potential predictors. Table 5 reports the overview of results.

Table 5: Additional Results Overview: Including a lag of each p predictor.

Model RMSE

Ridge 0.326
LASSO 0.376
Elastic Net 0.317
Bagging 0.360
Random Forest 0.364
Boosting 0.345
SVR 0.308

Notes: The table reports in column 2 the RMSE of ML models including lagged predictors. The models
were estimated via five-fold cross-validation.

We see that all results are worse compared to the baseline version. However, we notice

that, again, the best performing models are the SVR with a linear kernel, elastic net, and

ridge. The relative performance of the models compared to each other is consistent with

our baseline results that do not include lagged predictors.

A.1.2 Additional Results: SVR other kernels

For the SVR, it is important to choose the correct kernel. We consider an SVR with a

linear, polynomial, and radial kernel. Using a polynomial kernel involves choosing the

degree of the polynomial. Firstly, we consider a polynomial of degree 2 and secondly, we
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let cross-validation choose the degree of the polynomial5. Table 6 provides an overview

of results for these different kernels6. The SVR with linear kernel outperforms all others.

This is in line with our results in section 4, further suggesting a linear relationship between

predictors and GDP.

Table 6: Additional Results Overview: SVR kernels

Model RMSE

SVR linear kernel 0.308
SVR polynomial kernel (d=2) 0.402
SVR polynomial kernel (d with cv) 0.402
SVR radial kernel 0.340

Notes: The table reports in column 2 the RMSE of various SVR models with different kernels estimated
via five-fold cross-validation.

A.1.3 Additional Results: Mean Absolute Error

To check robustness, we also want to consider another loss function to quantify the accu-

racy of our forecasts than the squared errors loss function discussed in section 4.1. Table

Table 7: Results Overview

Model MAE Benchmark comparison

AR PCA

AR 0.313 33%
PCA 0.236 -25%∗∗∗

FSS 0.370 18% 57%
Lasso 0.249 -20%∗ 5%
Ridge 0.228 -27%∗∗∗ -3%
Elastic Net 0.223 -29%∗∗∗ -5%
Bagging 0.268 -14%∗∗ 13%
Random Forest 0.266 -15%∗∗ 13%
Gradient boosting 0.246 -21%∗∗∗ 4%
SVR 0.232 -26%∗∗∗ -2%

Notes: The table reports in column 2 the MAE of models described in section 2. The models were
estimated via five-fold cross-validation. Columns 3 and 4 show relative gains/losses in terms of MAE
compared to the AR and PCA benchmark models, respectively. The stars represent the significance
levels of one-sided Diebold-Mariano test: ∗∗∗ significant at 1%, ∗∗ significant at 5%, ∗ significant at 10%.

5We have an additional hyperparameter: degree (d). We search for the optimal value of d from a range
2− 4 using cross-validation.

6Please note that the optimal choice for the degree of the polynomial using cross-validation is d = 2
in each period and therefore, the results are identical to SVR with polynomial of degree 2.
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7 provides an overview of the MAEs. In the first column, the MAEs from the recursive

nowcasting exercise are displayed, whereas the second and third columns report the rela-

tive gain/loss in terms of MAE to the AR and PCA benchmark models. We see that the

overall pattern of results stays largely intact. The elastic net is still the best performing

model, closely followed by the SVR and ridge models. Again, all ML methods reduce the

MAE compared to AR benchmark on a significant level. On the other hand, elastic net,

SVR, and Ridge slightly improve the nowcasting accuracy in terms of MAE compared to

the strong PCA benchmark, but the effect is not statistically significant.
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A.2 Diebold and Mariano test

Table 8: Diebold and Mariano (1995) one-sided test p-values

AR PCA

AR 0.96
PCA 0.04
FSS 0.87 0.99
LASSO 0.04 0.20
Ridge 0.02 0.06
ElasticNet 0.01 0.05
Bagging 0.05 0.74
RF 0.03 0.75
Boosting 0.02 0.54
SVR 0.01 0.10

Notes: The table reports the p-values of one sided Diebold and Mariano test with squared errors loss
function.

Table 8 reports the p-values of one sided Diebold and Mariano test corresponding

to the results shown in table 2 in section 4 that reports the RMSEs. The Diebold and

Mariano test is a statistical test used to evaluate the accuracy and statistical significance of

forecast differences between two competing forecasting models. The loss function applied

to estimate the significance of forecast differences is squared errors. More precisely, we

compare the forecast accuracy of each method versus that of the AR benchmark first and

then versus that of the PCA benchmark second.

Table 9: Diebold and Mariano (1995) one-sided test p-values

AR PCA

AR 0.99
PCA 0.01
FSS 0.85 1.00
Lasso 0.08 0.68
Ridge 0.01 0.33
ElasticNet 0.01 0.29
Bagging 0.05 0.93
RF 0.03 0.93
Boosting 0.01 0.71
SVR 0.01 0.43

Notes: The table reports the p-values of one sided Diebold and Mariano test with absolute error loss
function.
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Whereas table 8 applies the squared error loss function to calculate the significance of

forecast differences, table 9 reports the p-values of one sided Diebold and Mariano test

corresponding to the absolute error loss function shown in table 7 in section A.1.3. Again,

we compare the forecast accuracy of each method versus that of the AR benchmark first

and then versus that of the PCA benchmark second.
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A.3 Packages used in R

All our models are estimated in R using following packages.

We use the package caret by Kuhn and Max (2008) to perform cross-validation. This

package provides a unified interface for training and evaluating a wide range of machine

learning models.

Package glmnet by Friedman et al. (2010) is used to estimate ridge, LASSO, and

elastic net. It provides functions for fitting generalized linear models with regularization

including ridge, LASSO, and elastic net regression.

Both bagging and random forest are estimated using package randomForest by Liaw

and Wiener (2002). For bagging the parameter mtry equals p, which means that it con-

siders all predictors at each split of the tree, whereas for random forest this parameter is

set to m < p, which means that only a random set m of p predictors is considered at each

split.

Boosting method is implemented using package gbm from https://CRAN.R-project.

org/package=gbm.

SVR is estimated via package e1071 from https://CRAN.R-project.org/package=

e1071
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A.4 Cross-validation

For the benchmark models above, we used the BIC to make critical decisions such as the

lag order in AR model or the number of principal components in PCA analyses. The BIC is

based on the likelihood function of the model and penalizes models with more parameters.

It is useful because it provides a quantitative measure of the trade-off between model

complexity and goodness of fit, which can help to avoid overfitting. However, the BIC,

like other model selection criteria, is based on the available data and does not take into

account the model’s performance on new, unseen data. Therefore, selecting a model based

solely on the BIC may not guarantee optimal performance on out-of-sample data.

We want to minimize the MSE, which is a commonly used metric to evaluate the

performance of a machine learning model. It measures the average squared difference

between the predicted and true values across all instances in the dataset. The MSE can

be expressed as:

MSE = E[(θ̂ − θ)2] = Var(θ̂) + Bias(θ̂, θ)2, (17)

where θ̂ is an estimator of the true parameter θ, E denotes the expected value, Var is the

variance, and Bias is the bias of the estimator.

The equation (17) captures the bias-variance trade-off, a fundamental concept in ma-

chine learning that involves balancing two sources of error: bias and variance. Bias refers

to the tendency of a model to consistently make erroneous predictions in the same direc-

tion. It can be thought of as the difference between the expected prediction of the model

and the true value. A high bias model is typically oversimplified and cannot capture the

complexity of the data, leading to underfitting. Variance, on the other hand, refers to

the tendency of a model to make erratic predictions based on small fluctuations in the

training data. It can be thought of as the variability of model predictions for different

training sets. A high variance model is typically overfitted and too complex, capturing

the noise in the data and unable to generalize well to new data. A model with high bias

will have a high MSE due to its underfitting, whereas a model with high variance will also

have a high MSE due to its overfitting. The ideal model strikes a balance between bias

and variance, leading to a low MSE.
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We care about something called the test MSE that measures the model’s performance

on data that was not used to fit the model and is a more accurate assessment of its ability

to generalize than the training MSE (in-sample MSE). While the training MSE is a useful

metric for evaluating how well a model fits the training data, it is not necessarily a good

indicator of how well the model will perform out-of-sample. This is because a model can

potentially be overfit to the training data by memorizing the noise and idiosyncrasies of

the training set, resulting in a low training MSE but a high test MSE. In practice, the

test MSE is often estimated by splitting the available data into training and testing sets,

fitting the model on the training set, and evaluating its performance on the test set. This

allows us to get a sense of how well the model is likely to perform on new data before

deploying it in the real world. A large gap between the training error and the test error

indicates overfitting, while a high test error indicates underfitting or poor model choice.

Cross-validation is a resampling technique that directly estimates the model’s perfor-

mance on unseen data and allows us to compare different models based on their perfor-

mance on testing data. The basic idea of cross-validation is to split the available data into

two sets: a training set and a validation set. The model is trained on the training set and

then evaluated on the validation set to estimate its performance. This process is repeated

multiple times, with different random splits of the data, to obtain an average estimate of

the model’s performance. Therefore, we will use cross-validation to make decisions about

hyperparameters in our models.
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