K-state switching models with endogenous transition distributions

December 31, 2011
Issue 2011-13

Summary

Two Bayesian sampling schemes are outlined to estimate a K-state Markov switching model with time-varying transition probabilities. The multinomial logit model for the transition probabilities is alternatively expressed as a random utility model and as a difference random utility model. The estimation uses data augmentation and both sampling schemes can be based on Gibbs sampling. Based on the model estimate, we are able to discriminate the model against a smooth transition model, in which the state probability may be influenced by a variable, but without depending on the past prevailing state. Formulating a definition allows to determine the relevant threshold level of the covariate influencing the transition distribution without resorting to the usual grid search. Identification issues are addressed with random permutation sampling. In terms of efficiency the extension to difference random utility in combination with random permutation sampling performs best. To illustrate the method, we estimate a two-pillar Phillips curve for the euro area, in which the inflation rate depends on the low-frequency components of M3 growth, real GDP growth and the change in the government bond yield, and on the highfrequency component of the output gap. Using recent data series, the effect of the low-frequency component of M3 growth depends on regimes determined by lagged credit growth.

Download file now

The file can be downloaded with the button below.

Issue:
13
Pages:
48
JEL classification:
C11, C22, E31, E52
Keywords:
Bayesian analysis, credit, M3 growth, Markov switching, Phillips curve, permutation sampling, threshold level, time-varying probabilities
Year:
2011

Additional files

Related content

Author(s)

  • Sylvia Kaufmann

Your settings

Required: These cookies (e.g. for storing your IP address) cannot be rejected as they are necessary to ensure the operation of the website. These data are not evaluated further.
Analytics: If you consent to this category, data such as IP address, location, device information, browser version and site visitor behaviour will be collected. These data are evaluated for the SNB's internal purposes and are kept for two years.
Third-party: If you consent to this category, third-party services (used, for example, to add social multimedia content to the SNB's website) will be activated which collect personal data, process these data, disclose them abroad - worldwide - and place cookies. The relevant data protection regulations are linked in the 'Privacy statement for the website of the Swiss National Bank'.

Choose your preferred settings:

This website uses cookies, analytics tools and other technologies to provide requested features, content and services, to personalise the content shown, to provide links to social media, and to analyse the use of the website in anonymised form for the purposes of improving usability. Personal data are also disclosed abroad - worldwide - to video service providers and the analytics tools of these providers are used. More information is available under 'Manage settings'.