Bottom-up or Direct? Forecasting German GDP in a Data-rich Environment

December 6, 2012
Issue 2012-16

Summary

This paper presents a method to conduct early estimates of GDP growth in Germany. We employ MIDAS regressions to circumvent the mixed frequency problem and use pooling techniques to summarize efficiently the information content of the various indicators. More specifically, we investigate whether it is better to disaggregate GDP (either via total value added of each sector or by the expenditure side) or whether a direct approach is more appropriate when it comes to forecasting GDP growth. Our approach combines a large set of monthly and quarterly coincident and leading indicators and takes into account the respective publication delay. In a simulated out-of-sample experiment we evaluate the different modelling strategies conditional on the given state of information and depending on the model averaging technique. The proposed approach is computationally simple and can be easily implemented as a nowcasting tool. Finally, this method also allows to retrace the driving forces of the forecast and hence enables the interpretability of the forecast outcome.

Download file now

The file can be downloaded with the button below.

Issue:
16
Pages:
57
JEL classification:
E32, E37, C52, C53
Keywords:
Contemporaneous aggregation, nowcasting, leading indicators, MIDAS, forecast combination, forecast evaluation
Year:
2012

Additional files

Related content

Author(s)

  • Katja Drechsel

  • Dr. Rolf Scheufele

Your settings

Required: These cookies (e.g. for storing your IP address) cannot be rejected as they are necessary to ensure the operation of the website. These data are not evaluated further.
Analytics: If you consent to this category, data such as IP address, location, device information, browser version and site visitor behaviour will be collected. These data are evaluated for the SNB's internal purposes and are kept for two years.
Third-party: If you consent to this category, third-party services (used, for example, to add social multimedia content to the SNB's website) will be activated which collect personal data, process these data, disclose them abroad - worldwide - and place cookies. The relevant data protection regulations are linked in the 'Privacy statement for the website of the Swiss National Bank'.

Choose your preferred settings:

This website uses cookies, analytics tools and other technologies to provide requested features, content and services, to personalise the content shown, to provide links to social media, and to analyse the use of the website in anonymised form for the purposes of improving usability. Personal data are also disclosed abroad - worldwide - to video service providers and the analytics tools of these providers are used. More information is available under 'Manage settings'.